Impedance analysis of porous electrode structures in batteries and fuel cells

被引:22
作者
Weber, Andre [1 ]
机构
[1] Karlsruhe Inst Technol KIT, Inst Appl Mat IAM WET, Adenauerring 20b, D-76131 Karlsruhe, Germany
关键词
Electrochemical impedance spectroscopy; distribution of relaxation times; transmission line model; lithium ion battery; fuel cell; LiB; SOFC; SOEC; SOC; PEMFC; ION-BEAM TOMOGRAPHY; ELECTROCHEMICAL IMPEDANCE; IMMITTANCE DATA; ANODES; RECONSTRUCTION; INTERCALATION; KINETICS; MODEL; SPECTROSCOPY; TRANSPORT;
D O I
10.1515/teme-2020-0084
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Today technical electrodes in batteries and fuel cells rely on complex multiphase microstructures that facilitate electronic, ionic and, in case of fuel cells, diffusive gas transport to the active reaction sites distributed in the electrode volume. The impedance of such electrodes can be described by the well-established transmission line model (TLM) approach. In a TLM, transport, charge transfer phenomena and capacitive effects are coupled considering microstructural features of the electrode. Its application for impedance data analysis of technical cells is challenging as the TLM impedance extends over a wide frequency range and quite often a strong overlapping with other contributions takes place. In this paper the application of the distribution of relaxation times (DRT) to the analysis of technical electrodes in batteries and fuel cells is elucidated. Different examples how to apply the DRT to analyze impedance spectra of solid oxide-, polymer electrolyte- and lithium ion-cells will be discussed. It will be shown that the TLM is usually represented by multiple peaks in the DRT, which might be strongly affected if contributions of different electrode layers overlap in the spectra. Related error sources and countermeasures are illustrated. Approaches how the DRT can be applied for the analysis of measured spectra and how it is able to support CNLS-fitting are presented.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 65 条
[1]   Electrode kinetics of porous mixed-conducting oxygen electrodes [J].
Adler, SB ;
Lane, JA ;
Steele, BCH .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1996, 143 (11) :3554-3564
[2]   Oxygen Transport Kinetics of Mixed Ionic-Electronic Conductors by Coupling Focused Ion Beam Tomography and Electrochemical Impedance Spectroscopy [J].
Almar, Laura ;
Szasz, Julian ;
Weber, Andre ;
Ivers-Tiffee, Ellen .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (04) :F289-F297
[3]   Characterization of high-power lithium-ion batteries by electrochemical impedance spectroscopy. II: Modelling [J].
Andre, D. ;
Meiler, M. ;
Steiner, K. ;
Walz, H. ;
Soczka-Guth, T. ;
Sauer, D. U. .
JOURNAL OF POWER SOURCES, 2011, 196 (12) :5349-5356
[4]   Characterization of high-power lithium-ion batteries by electrochemical impedance spectroscopy. I. Experimental investigation [J].
Andre, D. ;
Meiler, M. ;
Steiner, K. ;
Wimmer, Ch ;
Soczka-Guth, T. ;
Sauer, D. U. .
JOURNAL OF POWER SOURCES, 2011, 196 (12) :5334-5341
[5]  
[Anonymous], 2008, ELECTROCHEMICAL SOC
[6]   Detailed characterization of anode-supported SOFCs by impedance spectroscopy [J].
Barfod, Rasmus ;
Mogensen, Mogens ;
Klemenso, Trine ;
Hagen, Anke ;
Liu, Yi-Lin ;
Hendriksen, Peter Vang .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2007, 154 (04) :B371-B378
[7]  
Barsoukov E, 2005, IMPEDANCE SPECTROSCOPY: THEORY, EXPERIMENT, AND APPLICATIONS, 2ND EDITION, pXII
[8]   A new computational approach for SOFC impedance from detailed electrochemical reaction-diffusion models [J].
Bessler, WG .
SOLID STATE IONICS, 2005, 176 (11-12) :997-1011
[9]   A new framework for physically based modeling of solid oxide fuel cells [J].
Bessler, Wolfgang G. ;
Gewies, Stefan ;
Vogler, Marcel .
ELECTROCHIMICA ACTA, 2007, 53 (04) :1782-1800
[10]   Model anodes and anode models for understanding the mechanism of hydrogen oxidation in solid oxide fuel cells [J].
Bessler, Wolfgang G. ;
Vogler, Marcel ;
Stoermer, Heike ;
Gerthsen, Dagmar ;
Utz, Annika ;
Weber, Andre ;
Ivers-Tiffee, Ellen .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2010, 12 (42) :13888-13903