Self-waveguiding of relativistic laser pulses in neutral gas channels

被引:22
作者
Feder, L. [1 ]
Miao, B. [1 ]
Shrock, J. E. [1 ]
Goffin, A. [1 ]
Milchberg, H. M. [1 ]
机构
[1] Univ Maryland, Inst Res Elect & Appl Phys, College Pk, MD 20742 USA
来源
PHYSICAL REVIEW RESEARCH | 2020年 / 2卷 / 04期
基金
美国国家科学基金会;
关键词
IONIZATION; PROPAGATION; ATOMS;
D O I
10.1103/PhysRevResearch.2.043173
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We demonstrate that an ultrashort high intensity laser pulse can propagate for hundreds of Rayleigh ranges in a prepared neutral hydrogen channel by generating its own plasma waveguide as it propagates; the front of the pulse generates a waveguide that confines the rest of the pulse. A wide range of suitable initial index structures and gas densities will support this "self-waveguiding" process; the necessary feature is that the gas density on axis is a minimum. Here, we demonstrate self-waveguiding of pulses of at least 1.5 x 10(17) W/cm(2) (normalized vector potential a(0) similar to 0.3) over 10 cm, or similar to 100 Rayleigh ranges, limited only by our laser energy and length of our gas jet. We predict and observe characteristic oscillations corresponding to mode-beating during self-waveguiding. The self-waveguiding pulse leaves in its wake a fully ionized low-density plasma waveguide which can guide another pulse injected immediately following; we demonstrate optical guiding of such a follow-on probe pulse. The method is well suited to laser wakefield acceleration and other applications requiring a long laser-matter interaction length.
引用
收藏
页数:13
相关论文
共 33 条
  • [1] Abel inversion using total variation regularization: applications
    Asaki, Thomas J.
    Campbell, Patrick R.
    Chartrand, Rick
    Powell, Collin E.
    Vixie, Kevin R.
    Wohlberg, Brendt E.
    [J]. INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2006, 14 (08) : 873 - 885
  • [2] The effect of long timescale gas dynamics on femtosecond filamentation
    Cheng, Y. -H.
    Wahlstrand, J. K.
    Jhajj, N.
    Milchberg, H. M.
    [J]. OPTICS EXPRESS, 2013, 21 (04): : 4740 - 4751
  • [3] Optical mode structure of the plasma waveguide
    Clark, TR
    Milchberg, HM
    [J]. PHYSICAL REVIEW E, 2000, 61 (02): : 1954 - 1965
  • [4] Laser-driven implosion of a cylindrical plasma
    Clark, TR
    Milchberg, HM
    [J]. PHYSICAL REVIEW E, 1998, 57 (03): : 3417 - 3422
  • [5] ABOVE-THRESHOLD IONIZATION IN THE LONG-WAVELENGTH LIMIT
    CORKUM, PB
    BURNETT, NH
    BRUNEL, F
    [J]. PHYSICAL REVIEW LETTERS, 1989, 62 (11) : 1259 - 1262
  • [6] Couairon A, 2011, EUR PHYS J-SPEC TOP, V199, P5, DOI 10.1140/epjst/e2011-01503-3
  • [7] Reconstruction of abel-transformable images: The Gaussian basis-set expansion abel transform method
    Dribinski, V
    Ossadtchi, A
    Mandelshtam, VA
    Reisler, H
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2002, 73 (07) : 2634 - 2642
  • [8] LIGHT PIPE FOR HIGH-INTENSITY LASER-PULSES
    DURFEE, CG
    MILCHBERG, HM
    [J]. PHYSICAL REVIEW LETTERS, 1993, 71 (15) : 2409 - 2412
  • [9] Physics of laser-driven plasma-based electron accelerators
    Esarey, E.
    Schroeder, C. B.
    Leemans, W. P.
    [J]. REVIEWS OF MODERN PHYSICS, 2009, 81 (03) : 1229 - 1285
  • [10] Overview of plasma-based accelerator concepts
    Esarey, E
    Sprangle, P
    Krall, J
    Ting, A
    [J]. IEEE TRANSACTIONS ON PLASMA SCIENCE, 1996, 24 (02) : 252 - 288