Weighted average geodesic distance of Vicsek network

被引:47
作者
Deng, Juan [1 ]
Ye, Qianqian [2 ]
Wang, Qin [3 ]
机构
[1] ShenZhen Univ, Dept Math, Shenzhen 518000, Peoples R China
[2] Ningbo Univ, Dept Math, Ningbo 315211, Zhejiang, Peoples R China
[3] Zhejiang Wanli Univ, Sch Big Data & Software Engn, Ningbo 315100, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Fractal networks; Weighted average distance; Self-similar measure; GRAPHS; TIME; SUM;
D O I
10.1016/j.physa.2019.121327
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper concerns weighted average distances of Vicsek fractal and Vicsek networks by using the integral of geodesic distance in terms of self-similar measure with respect to the weight vector. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:6
相关论文
共 21 条
[1]   Computing the eccentric-distance sum for graph operations [J].
Azari, Mandieh ;
Iranmanesh, Ali .
DISCRETE APPLIED MATHEMATICS, 2013, 161 (18) :2827-2840
[2]   Emergence of scaling in random networks [J].
Barabási, AL ;
Albert, R .
SCIENCE, 1999, 286 (5439) :509-512
[3]   ECCENTRIC DISTANCE SUM OF SIERPINSKI GASKET AND SIERPINSKI NETWORK [J].
Chen, Jin ;
He, Long ;
Wang, Qin .
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2019, 27 (02)
[4]   The Laplacian spectrum and average trapping time for weighted Dyson hierarchical network [J].
Dai, Meifeng ;
Feng, Wenjing ;
Wu, Xianbin ;
Chi, Huijia ;
Li, Peng ;
Su, Weiyi .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2019, 515 :510-518
[5]  
Falconer K., 2003, FRACTAL GEOMETRY MAT, V2nd, DOI DOI 10.1002/0470013850
[6]   Asymptotic formula on average path length of fractal networks modeled on Sierpinski gasket [J].
Gao, Fei ;
Le, Anbo ;
Xi, Lifeng ;
Yin, Shuhua .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 434 (02) :1581-1596
[7]   Stochastic completeness for graphs with curvature dimension conditions [J].
Hua, Bobo ;
Lin, Yong .
ADVANCES IN MATHEMATICS, 2017, 306 :279-302
[8]   FRACTALS AND SELF SIMILARITY [J].
HUTCHINSON, JE .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1981, 30 (05) :713-747
[9]   On the eccentric distance sum of graphs [J].
Ilic, Aleksandar ;
Yu, Guihai ;
Feng, Lihua .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 381 (02) :590-600
[10]   On the minimum eccentric distance sum of bipartite graphs with some given parameters [J].
Li, S. C. ;
Wu, Y. Y. ;
Sun, L. L. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 430 (02) :1149-1162