Eisenstein polynomials over function fields

被引:2
作者
Dotti, Edoardo [2 ]
Micheli, Giacomo [1 ]
机构
[1] MIT, Dept Math, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] Univ Zurich, Inst Math, Winterthurerstr 190, CH-8057 Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
Function fields; Density; Polynomials; Riemann-Roch spaces;
D O I
10.1007/s00200-015-0275-2
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper we compute the density of monic and non-monic Eisenstein polynomials of fixed degree having entries in an integrally closed subring of a function field over a finite field. This gives a function field analogue of results by Dubickas (Appl Algebra Eng Commun Comput 14(2):127-132, 2003) and by Heyman and Shparlinski (Appl Algebra Eng Commun Comput 24(2):149-156, 2013).
引用
收藏
页码:159 / 168
页数:10
相关论文
共 50 条
[21]   Tuples of polynomials over finite fields with pairwise coprimality conditions [J].
Arias De Reyna, Juan ;
Heyman, Randell .
FINITE FIELDS AND THEIR APPLICATIONS, 2018, 53 :36-63
[22]   Index bounds for character sums of polynomials over finite fields [J].
Daqing Wan ;
Qiang Wang .
Designs, Codes and Cryptography, 2016, 81 :459-468
[23]   A probabilistic approach to value sets of polynomials over finite fields [J].
Gao, Zhicheng ;
Wang, Qiang .
FINITE FIELDS AND THEIR APPLICATIONS, 2015, 33 :160-174
[24]   Recursive Towers of Function Fields over Finite Fields [J].
Stichtenoth, Henning .
ARITHMETIC OF FINITE FIELDS, PROCEEDINGS, 2010, 6087 :1-6
[25]   WITT EQUIVALENCE OF FUNCTION FIELDS OVER GLOBAL FIELDS [J].
Gladki, Pawel ;
Marshall, Murray .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 369 (11) :7861-7881
[26]   Integral orbits over function fields [J].
Huang, Hsiu-Lien ;
Sun, Chia-Liang ;
Wang, Julie Tzu-Yueh .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2014, 10 (08) :2187-2204
[27]   On the Bateman-Horn conjecture for polynomials over large finite fields [J].
Entin, Alexei .
COMPOSITIO MATHEMATICA, 2016, 152 (12) :2525-2544
[28]   Permutation polynomials and their compositional inverses over finite fields by a local method [J].
Wu, Danyao ;
Yuan, Pingzhi .
DESIGNS CODES AND CRYPTOGRAPHY, 2024, 92 (02) :267-276
[29]   CAYLEY GRAPHS GENERATED BY SMALL DEGREE POLYNOMIALS OVER FINITE FIELDS [J].
Shparlinski, Igor F. .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2015, 29 (01) :376-381
[30]   Permutation polynomials and their compositional inverses over finite fields by a local method [J].
Danyao Wu ;
Pingzhi Yuan .
Designs, Codes and Cryptography, 2024, 92 (2) :267-276