Function fields;
Density;
Polynomials;
Riemann-Roch spaces;
D O I:
10.1007/s00200-015-0275-2
中图分类号:
TP39 [计算机的应用];
学科分类号:
081203 ;
0835 ;
摘要:
In this paper we compute the density of monic and non-monic Eisenstein polynomials of fixed degree having entries in an integrally closed subring of a function field over a finite field. This gives a function field analogue of results by Dubickas (Appl Algebra Eng Commun Comput 14(2):127-132, 2003) and by Heyman and Shparlinski (Appl Algebra Eng Commun Comput 24(2):149-156, 2013).
机构:
Univ Canterbury, Sch Math & Stat, Private Bag 4800, Christchurch 8140, New ZealandUniv Canterbury, Sch Math & Stat, Private Bag 4800, Christchurch 8140, New Zealand
机构:
German Univ Technol Oman GUtech, POB 1816, Athaibah 130, Oman
11 RWTH Aachen Univ, Fac Math Comp Sci & Nat Sci, D-52056 Aachen, GermanyGerman Univ Technol Oman GUtech, POB 1816, Athaibah 130, Oman
Heim, Bernhard
Neuhauser, Markus
论文数: 0引用数: 0
h-index: 0
机构:
German Univ Technol Oman GUtech, POB 1816, Athaibah 130, Oman
Univ KIU, Youth Ave,Turn 5-7, GE-4600 Kutaisi, GeorgiaGerman Univ Technol Oman GUtech, POB 1816, Athaibah 130, Oman
机构:
Univ Nacl Litoral, Fac Ingn Quim, Dept Matemat, RA-2829 Santiago Del Estero, Santa Fe, ArgentinaUniv Nacl Litoral, Fac Ingn Quim, Dept Matemat, RA-2829 Santiago Del Estero, Santa Fe, Argentina