Boosting Oxygen Evolution Reaction by Creating Both Metal Ion and Lattice-Oxygen Active Sites in a Complex Oxide

被引:293
作者
Zhu, Yinlong [1 ,2 ]
Tahini, Hassan A. [3 ]
Hu, Zhiwei [4 ]
Chen, Zhi-Gang [5 ,6 ]
Zhou, Wei [1 ]
Komarek, Alexander C. [4 ]
Lin, Qian [1 ]
Lin, Hong-Ji [7 ]
Chen, Chien-Te [7 ]
Zhong, Yijun [8 ]
Fernandez-Diaz, M. T. [9 ]
Smith, Sean C. [3 ]
Wang, Huanting [2 ]
Liu, Meilin [10 ]
Shao, Zongping [1 ,8 ]
机构
[1] Nanjing Tech Univ, Coll Chem Engn, State Key Lab Mat Chem Engn, Jiangsu Natl Synerget Innovat Ctr Adv Mat SICAM, 5 Xin Mofan Rd, Nanjing 210009, Peoples R China
[2] Monash Univ, Dept Chem Engn, Clayton, Vic 3800, Australia
[3] Australian Natl Univ, Res Sch Phys & Engn, Dept Appl Math, Canberra, ACT 2601, Australia
[4] Max Planck Inst Chem Phys Solids, Nothnitzer Str 40, D-01187 Dresden, Germany
[5] Univ Southern Queensland, Ctr Future Mat, Springfield, Qld 4300, Australia
[6] Univ Queensland, Mat Engn, Brisbane, Qld 4072, Australia
[7] Natl Synchrotron Radiat Res Ctr, 101 Hsin Ann Rd, Hsinchu 30076, Taiwan
[8] Curtin Univ, Dept Chem Engn, Perth, WA 6845, Australia
[9] ILL Grenoble, 71 Ave Martyrs, F-38042 Grenoble 9, France
[10] Georgia Inst Technol, Sch Mat Sci & Engn, Ctr Innovat Fuel Cell & Battery Technol, Atlanta, GA 30332 USA
基金
澳大利亚研究理事会;
关键词
complex oxides; coordination environment; dual active sites; honeycomb-like structures; oxygen evolution reaction; WATER OXIDATION; ELECTROCATALYSTS; PEROVSKITES; TRANSITION; CATALYSIS; STATE;
D O I
10.1002/adma.201905025
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Developing efficient and low-cost electrocatalysts for the oxygen evolution reaction (OER) is of paramount importance to many chemical and energy transformation technologies. The diversity and flexibility of metal oxides offer numerous degrees of freedom for enhancing catalytic activity by tailoring their physicochemical properties, but the active site of current metal oxides for OER is still limited to either metal ions or lattice oxygen. Here, a new complex oxide with unique hexagonal structure consisting of one honeycomb-like network, Ba4Sr4(Co0.8Fe0.2)(4)O-15 (hex-BSCF), is reported, demonstrating ultrahigh OER activity because both the tetrahedral Co ions and the octahedral oxygen ions on the surface are active, as confirmed by combined X-ray absorption spectroscopy analysis and theoretical calculations. The bulk hex-BSCF material synthesized by the facile and scalable sol-gel method achieves 10 mA cm(-2) at a low overpotential of only 340 mV (and small Tafel slope of 47 mV dec(-1)) in 0.1 m KOH, surpassing most metal oxides ever reported for OER, while maintaining excellent durability. This study opens up a new avenue to dramatically enhancing catalytic activity of metal oxides for other applications through rational design of structures with multiple active sites.
引用
收藏
页数:8
相关论文
共 50 条
[41]   Understanding the Origin of Reconstruction in Transition Metal Oxide Oxygen Evolution Reaction Electrocatalysts [J].
Zou, Anqi ;
Tang, Ying ;
Wu, Chao ;
Li, Junhua ;
Meng, Haoyan ;
Wang, Zhen ;
Ma, Yifan ;
An, Hang ;
Zhong, Haoyin ;
Zhang, Qi ;
Zhang, Xin ;
Xue, Junmin ;
Wang, Xiaopeng ;
Wu, Jiagang .
CHEMSUSCHEM, 2024, 17 (02)
[42]   Exciting lattice oxygen of nickel-iron bi-metal alkoxide for efficient electrochemical oxygen evolution reaction [J].
Zhang, Saihang ;
Huang, Senchuan ;
Sun, Fengzhan ;
Li, Yinghui ;
Ren, Li ;
Xu, Hao ;
Li, Zhao ;
Liu, Yifei ;
Li, Wei ;
Chong, Lina ;
Zou, Jianxin .
JOURNAL OF ENERGY CHEMISTRY, 2024, 88 :194-201
[43]   Unveiling the real active sites of Ni based metal organic framework electrocatalysts for the oxygen evolution reaction [J].
Li, Xue ;
Fan, Mingli ;
Wei, Dandan ;
Li, Maoguo ;
Wang, Yinling .
ELECTROCHIMICA ACTA, 2020, 354
[44]   Simultaneously Improved Surface and Bulk Participation of Evolved Perovskite Oxide for Boosting Oxygen Evolution Reaction Activity Using a Dynamic Cation Exchange Strategy [J].
Xie, Jiao ;
Gao, Yang ;
Chen, Guichan ;
Wang, Yi ;
Yu, Jing ;
Ciucci, Francesco ;
Chen, Dengjie ;
Shao, Zongping .
SMALL, 2022, 18 (47)
[45]   Surface chemical reconstruction of hierarchical hollow inverse-spinel manganese cobalt oxide boosting oxygen evolution reaction [J].
Fan, Chuang ;
Wu, Xiaodong ;
Li, Meng ;
Wang, Xu ;
Zhu, Yu ;
Fu, Gengtao ;
Ma, Tianyi ;
Tang, Yawen .
CHEMICAL ENGINEERING JOURNAL, 2022, 431
[46]   Increasing the Formation of Active Sites on Highly Crystalline Co Branched Nanoparticles for Improved Oxygen Evolution Reaction Electrocatalysis [J].
Myekhlai, Munkhshur ;
Benedetti, Tania M. ;
Gloag, Lucy ;
Goncales, Vinicius R. ;
Cheong, Soshan ;
Chen, Hsiang-Sheng ;
Gooding, J. Justin ;
Tilley, Richard D. .
CHEMCATCHEM, 2020, 12 (11) :3126-3131
[47]   High-Valence Metal-Driven Electronic Modulation for Boosting Oxygen Evolution Reaction in High-Entropy Spinel Oxide [J].
Antink, Wytse Hooch ;
Lee, Seongbeom ;
Lee, Hyeon Seok ;
Shin, Heejong ;
Yoo, Tae Yong ;
Ko, Wonjae ;
Shim, Jaehyuk ;
Na, Geumbi ;
Sung, Yung-Eun ;
Hyeon, Taeghwan .
ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (01)
[48]   Redefinition of the Active Species and the Mechanism of the Oxygen Evolution Reaction on Gold Oxide [J].
Yang, Shengxiang ;
Hetterscheid, Dennis G. H. .
ACS CATALYSIS, 2020, 10 (21) :12582-12589
[49]   An Amiable Design of Cobalt Single Atoms as the Active Sites for Oxygen Evolution Reaction in Desalinated Seawater [J].
Venkateswarlu, Sada ;
Umer, Muhammad ;
Son, Younghu ;
Govindaraju, Saravanan ;
Chellasamy, Gayathri ;
Panda, Atanu ;
Park, Juseong ;
Umer, Sohaib ;
Kim, Jeonghyeon ;
Choi, Sang-Il ;
Yun, Kyusik ;
Yoon, Minyoung ;
Lee, Geunsik ;
Kim, Myung Jong .
SMALL, 2024, 20 (01)
[50]   Emerging linear activity trend in the oxygen evolution reaction with dual-active-sites mechanism [J].
Yang, Li ;
Wu, Yuxuan ;
Wu, Fan ;
Zhao, Yuan ;
Zhuo, Zhiwen ;
Wang, Zhaowu ;
Li, Xiyu ;
Luo, Yi ;
Jiang, Jun .
JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (40) :20946-20952