Boosting Oxygen Evolution Reaction by Creating Both Metal Ion and Lattice-Oxygen Active Sites in a Complex Oxide

被引:287
作者
Zhu, Yinlong [1 ,2 ]
Tahini, Hassan A. [3 ]
Hu, Zhiwei [4 ]
Chen, Zhi-Gang [5 ,6 ]
Zhou, Wei [1 ]
Komarek, Alexander C. [4 ]
Lin, Qian [1 ]
Lin, Hong-Ji [7 ]
Chen, Chien-Te [7 ]
Zhong, Yijun [8 ]
Fernandez-Diaz, M. T. [9 ]
Smith, Sean C. [3 ]
Wang, Huanting [2 ]
Liu, Meilin [10 ]
Shao, Zongping [1 ,8 ]
机构
[1] Nanjing Tech Univ, Coll Chem Engn, State Key Lab Mat Chem Engn, Jiangsu Natl Synerget Innovat Ctr Adv Mat SICAM, 5 Xin Mofan Rd, Nanjing 210009, Peoples R China
[2] Monash Univ, Dept Chem Engn, Clayton, Vic 3800, Australia
[3] Australian Natl Univ, Res Sch Phys & Engn, Dept Appl Math, Canberra, ACT 2601, Australia
[4] Max Planck Inst Chem Phys Solids, Nothnitzer Str 40, D-01187 Dresden, Germany
[5] Univ Southern Queensland, Ctr Future Mat, Springfield, Qld 4300, Australia
[6] Univ Queensland, Mat Engn, Brisbane, Qld 4072, Australia
[7] Natl Synchrotron Radiat Res Ctr, 101 Hsin Ann Rd, Hsinchu 30076, Taiwan
[8] Curtin Univ, Dept Chem Engn, Perth, WA 6845, Australia
[9] ILL Grenoble, 71 Ave Martyrs, F-38042 Grenoble 9, France
[10] Georgia Inst Technol, Sch Mat Sci & Engn, Ctr Innovat Fuel Cell & Battery Technol, Atlanta, GA 30332 USA
基金
澳大利亚研究理事会;
关键词
complex oxides; coordination environment; dual active sites; honeycomb-like structures; oxygen evolution reaction; WATER OXIDATION; ELECTROCATALYSTS; PEROVSKITES; TRANSITION; CATALYSIS; STATE;
D O I
10.1002/adma.201905025
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Developing efficient and low-cost electrocatalysts for the oxygen evolution reaction (OER) is of paramount importance to many chemical and energy transformation technologies. The diversity and flexibility of metal oxides offer numerous degrees of freedom for enhancing catalytic activity by tailoring their physicochemical properties, but the active site of current metal oxides for OER is still limited to either metal ions or lattice oxygen. Here, a new complex oxide with unique hexagonal structure consisting of one honeycomb-like network, Ba4Sr4(Co0.8Fe0.2)(4)O-15 (hex-BSCF), is reported, demonstrating ultrahigh OER activity because both the tetrahedral Co ions and the octahedral oxygen ions on the surface are active, as confirmed by combined X-ray absorption spectroscopy analysis and theoretical calculations. The bulk hex-BSCF material synthesized by the facile and scalable sol-gel method achieves 10 mA cm(-2) at a low overpotential of only 340 mV (and small Tafel slope of 47 mV dec(-1)) in 0.1 m KOH, surpassing most metal oxides ever reported for OER, while maintaining excellent durability. This study opens up a new avenue to dramatically enhancing catalytic activity of metal oxides for other applications through rational design of structures with multiple active sites.
引用
收藏
页数:8
相关论文
共 50 条
[31]   Iridium Oxide Modified with Silver Single Atom for Boosting Oxygen Evolution Reaction in Acidic Media [J].
Zhang, Fei-Fei ;
Cheng, Chuan-Qi ;
Wang, Jia-Qi ;
Shang, Long ;
Feng, Yi ;
Zhang, Yan ;
Mao, Jing ;
Guo, Qian-Jin ;
Xie, Ya-Meng ;
Dong, Cun-Ku ;
Cheng, Ya-Hui ;
Liu, Hui ;
Du, Xi-Wen .
ACS ENERGY LETTERS, 2021, 6 (04) :1588-1595
[32]   Mixed Transition Metal Oxide with Vacancy-Induced Lattice Distortion for Enhanced Catalytic Activity of Oxygen Evolution Reaction [J].
Lee, Hyeon Jeong ;
Back, Seoin ;
Lee, Ji Hoon ;
Choi, Sun Hee ;
Jung, Yousung ;
Choi, Jang Wook .
ACS CATALYSIS, 2019, 9 (08) :7099-7108
[33]   Metal oxides supported cobalt nanoparticles: Active electrocatalysts for oxygen evolution reaction [J].
Akbayrak, Merve ;
Onal, Ahmet M. .
ELECTROCHIMICA ACTA, 2021, 393
[34]   The individual role of active sites in bimetallic oxygen evolution reaction catalysts [J].
Wang, Guan-Bo ;
Hsu, Chia-Shuo ;
Chen, Hao Ming .
DALTON TRANSACTIONS, 2020, 49 (48) :17505-17510
[35]   Competition between Lattice Oxygen and Adsorbate Evolving Mechanisms in Rutile Ru-Based Oxide for the Oxygen Evolution Reaction [J].
Liu, Shangguo ;
Chang, Yaxiang ;
He, Na ;
Zhu, Shenglin ;
Wang, Lianbao ;
Liu, Xien .
ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (16) :20563-20570
[36]   Dual active site tandem catalysis of metal hydroxyl oxides and single atoms for boosting oxygen evolution reaction [J].
Liu, Huibing ;
Xu, Xinchen ;
Xu, Haoxiang ;
Wang, Shitao ;
Niu, Ziqiang ;
Jia, Qiaohuan ;
Yang, Liu ;
Cao, Rui ;
Zheng, Lirong ;
Cao, Dapeng .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2021, 297
[37]   Key roles of surface Fe sites and Sr vacancies in the perovskite for an efficient oxygen evolution reaction via lattice oxygen oxidation [J].
Zhao, Jia-Wei ;
Zhang, Hong ;
Li, Cheng-Fei ;
Zhou, Xia ;
Wu, Jin-Qi ;
Zeng, Feng ;
Zhang, Jiangwei ;
Li, Gao-Ren .
ENERGY & ENVIRONMENTAL SCIENCE, 2022, 15 (09) :3912-3922
[38]   Binary Transition-Metal Oxide Hollow Nanoparticles for Oxygen Evolution Reaction [J].
Peng, Pan ;
Lin, Xiao-Min ;
Liu, Yuzi ;
Filatov, Alexander S. ;
Li, Dongguo ;
Stamenkovic, Vojislav R. ;
Yang, Dali ;
Prakapenka, Vitali B. ;
Lei, Aiwen ;
Shevchenko, Elena V. .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (29) :24715-24724
[39]   Structural Variations of Metal Oxide-Based Electrocatalysts for Oxygen Evolution Reaction [J].
Gao, Ruiqin ;
Deng, Meng ;
Yan, Qing ;
Fang, Zhenxing ;
Li, Lichun ;
Shen, Haoyu ;
Chen, Zhengfei .
SMALL METHODS, 2021, 5 (12)
[40]   Effect of the Precursor Metal Salt on the Oxygen Evolution Reaction for NiFe Oxide Materials [J].
Zuber, Axel ;
Oikonomou, Ilias M. ;
Gannon, Lee ;
Chunin, Igor ;
Reith, Lukas ;
Can, Belin ;
Lounasvuori, Mailis ;
Schultz, Thorsten ;
Koch, Norbert ;
McGuinness, Cormac ;
Menezes, Prashanth W. ;
Nicolosi, Valeria ;
Browne, Michelle P. .
CHEMELECTROCHEM, 2024, 11 (17)