Boosting Oxygen Evolution Reaction by Creating Both Metal Ion and Lattice-Oxygen Active Sites in a Complex Oxide

被引:287
作者
Zhu, Yinlong [1 ,2 ]
Tahini, Hassan A. [3 ]
Hu, Zhiwei [4 ]
Chen, Zhi-Gang [5 ,6 ]
Zhou, Wei [1 ]
Komarek, Alexander C. [4 ]
Lin, Qian [1 ]
Lin, Hong-Ji [7 ]
Chen, Chien-Te [7 ]
Zhong, Yijun [8 ]
Fernandez-Diaz, M. T. [9 ]
Smith, Sean C. [3 ]
Wang, Huanting [2 ]
Liu, Meilin [10 ]
Shao, Zongping [1 ,8 ]
机构
[1] Nanjing Tech Univ, Coll Chem Engn, State Key Lab Mat Chem Engn, Jiangsu Natl Synerget Innovat Ctr Adv Mat SICAM, 5 Xin Mofan Rd, Nanjing 210009, Peoples R China
[2] Monash Univ, Dept Chem Engn, Clayton, Vic 3800, Australia
[3] Australian Natl Univ, Res Sch Phys & Engn, Dept Appl Math, Canberra, ACT 2601, Australia
[4] Max Planck Inst Chem Phys Solids, Nothnitzer Str 40, D-01187 Dresden, Germany
[5] Univ Southern Queensland, Ctr Future Mat, Springfield, Qld 4300, Australia
[6] Univ Queensland, Mat Engn, Brisbane, Qld 4072, Australia
[7] Natl Synchrotron Radiat Res Ctr, 101 Hsin Ann Rd, Hsinchu 30076, Taiwan
[8] Curtin Univ, Dept Chem Engn, Perth, WA 6845, Australia
[9] ILL Grenoble, 71 Ave Martyrs, F-38042 Grenoble 9, France
[10] Georgia Inst Technol, Sch Mat Sci & Engn, Ctr Innovat Fuel Cell & Battery Technol, Atlanta, GA 30332 USA
基金
澳大利亚研究理事会;
关键词
complex oxides; coordination environment; dual active sites; honeycomb-like structures; oxygen evolution reaction; WATER OXIDATION; ELECTROCATALYSTS; PEROVSKITES; TRANSITION; CATALYSIS; STATE;
D O I
10.1002/adma.201905025
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Developing efficient and low-cost electrocatalysts for the oxygen evolution reaction (OER) is of paramount importance to many chemical and energy transformation technologies. The diversity and flexibility of metal oxides offer numerous degrees of freedom for enhancing catalytic activity by tailoring their physicochemical properties, but the active site of current metal oxides for OER is still limited to either metal ions or lattice oxygen. Here, a new complex oxide with unique hexagonal structure consisting of one honeycomb-like network, Ba4Sr4(Co0.8Fe0.2)(4)O-15 (hex-BSCF), is reported, demonstrating ultrahigh OER activity because both the tetrahedral Co ions and the octahedral oxygen ions on the surface are active, as confirmed by combined X-ray absorption spectroscopy analysis and theoretical calculations. The bulk hex-BSCF material synthesized by the facile and scalable sol-gel method achieves 10 mA cm(-2) at a low overpotential of only 340 mV (and small Tafel slope of 47 mV dec(-1)) in 0.1 m KOH, surpassing most metal oxides ever reported for OER, while maintaining excellent durability. This study opens up a new avenue to dramatically enhancing catalytic activity of metal oxides for other applications through rational design of structures with multiple active sites.
引用
收藏
页数:8
相关论文
共 50 条
[21]   Enabling Lattice Oxygen Participation in a Triple Perovskite Oxide Electrocatalyst for the Oxygen Evolution Reaction [J].
Tomar, Anuj Kumar ;
Pan, Uday Narayan ;
Kim, Nam Hoon ;
Lee, Joong Hee .
ACS ENERGY LETTERS, 2022, 8 (01) :565-573
[22]   Nonmetallic Active Sites on Nickel Phosphide in Oxygen Evolution Reaction [J].
Zhang, Pengfei ;
Qiu, Hongmei ;
Li, Huicong ;
He, Jiangang ;
Xu, Yingying ;
Wang, Rongming .
NANOMATERIALS, 2022, 12 (07)
[23]   Hierarchically devising NiFeOxHy catalyst with surface Fe active sites for efficient oxygen evolution reaction [J].
Wang, Rong ;
Wang, Chizhong ;
Yin, Sihan ;
Peng, Yue ;
Chen, Jianjun ;
Deng, Yanxi ;
Li, Junhua .
CATALYSIS TODAY, 2021, 364 :140-147
[24]   Co3-xO4/NiO with abundant Ni3+ active sites for boosting oxygen evolution reaction [J].
Zhang, Yong-Chao ;
Han, Caidi ;
Gao, Jian ;
Wu, Jinting ;
Zhu, Xiao-Dong ;
Zou, Ji-Jun .
CHEMICAL ENGINEERING JOURNAL, 2022, 446
[25]   Dynamic stability of active sites in hydr(oxy)oxides for the oxygen evolution reaction [J].
Chung, Dong Young ;
Lopes, Pietro P. ;
Martins, Pedro Farinazzo Bergamo Dias ;
He, Haiying ;
Kawaguchi, Tomoya ;
Zapol, Peter ;
You, Hoydoo ;
Tripkovic, Dusan ;
Strmcnik, Dusan ;
Zhu, Yisi ;
Seifert, Soenke ;
Lee, Sungsik ;
Stamenkovic, Vojislav R. ;
Markovic, Nenad M. .
NATURE ENERGY, 2020, 5 (03) :222-230
[26]   Boosting oxygen evolution reaction of transition metal layered double hydroxide by metalloid incorporation [J].
Han, HyukSu ;
Kim, Kang Min ;
Ryu, Jeong Ho ;
Lee, Ho Jun ;
Woo, Jungwook ;
Ali, Ghulam ;
Chung, Kyung Yoon ;
Kim, Taekyung ;
Kang, Sukhyun ;
Choi, Seunggun ;
Kwon, Jiseok ;
Chung, Yong-Chae ;
Mhin, Sungwook ;
Song, Taeseup .
NANO ENERGY, 2020, 75
[27]   Creating Highly Active Atomic Layer Deposited NiO Electrocatalysts for the Oxygen Evolution Reaction [J].
Nardi, Katie L. ;
Yang, Nuoya ;
Dickens, Colin F. ;
Strickler, Alaina L. ;
Bent, Stacey F. .
ADVANCED ENERGY MATERIALS, 2015, 5 (17)
[28]   Shifting Oxygen Evolution Reaction Pathway via Activating Lattice Oxygen in Layered Perovskite Oxide [J].
Jia, Chenghao ;
Xiang, Xuepeng ;
Zhang, Jun ;
He, Zuyun ;
Gong, Zhiheng ;
Chen, Huijun ;
Zhang, Nian ;
Wang, Xinwei ;
Zhao, Shijun ;
Chen, Yan .
ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (37)
[29]   Quantitative Evaluation of the Activity of Low-Spin Tetravalent Nickel Ion Sites for the Oxygen Evolution Reaction [J].
Ren, Yadan ;
Horiguchi, Tomoya ;
Uchiyama, Tomoki ;
Orikasa, Yuki ;
Watanabe, Toshiki ;
Yamamoto, Kentaro ;
Takami, Tsuyoshi ;
Matsunaga, Toshiyuki ;
Nishiki, Yoshinori ;
Mitsushima, Shigenori ;
Uchimoto, Yoshiharu .
ACS APPLIED ENERGY MATERIALS, 2021, 4 (10) :10731-10738
[30]   Assessment of active areas for the oxygen evolution reaction on an amorphous iridium oxide surface [J].
Kluge, Regina M. ;
Haid, Richard W. ;
Bandarenka, Aliaksandr S. .
JOURNAL OF CATALYSIS, 2021, 396 (14-22) :14-22