Rainbow domination on trees

被引:68
作者
Chang, Gerard J. [1 ,2 ]
Wu, Jiaojiao [1 ]
Zhu, Xuding [3 ]
机构
[1] Natl Taiwan Univ, Dept Math, Taipei 10617, Taiwan
[2] Natl Taiwan Univ, Taida Inst Math Sci, Taipei 10617, Taiwan
[3] Natl Sun Yat Sen Univ, Dept Appl Math, Kaohsiung 80424, Taiwan
关键词
Domination; Rainbow domination; NP-complete; Chordal graph; Bipartite graph; Algorithm; Tree; Leaf;
D O I
10.1016/j.dam.2009.08.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies a variation of domination in graphs called rainbow domination. For a positive integer k, a k-rainbow dominating function of a graph G is a function f from V(G) to the set of all subsets of {1, 2,..., k} such that for any vertex nu with f(nu) = empty set we have boolean OR(u is an element of NG(nu))f(u) = {1, 2,..., k} The 1-rainbow domination is the same as the ordinary domination. The k-rainbow domination problem is to determine the k-rainbow domination number gamma(rk)(G) of a graph G, that is the minimum value of Sigma(nu is an element of V(G)) vertical bar f(nu)vertical bar where f runs over all k-rainbow dominating functions of G. In this paper, we prove that the k-rainbow domination problem is NP-complete even when restricted to chordal graphs or bipartite graphs. We then give a linear-time algorithm for the k-rainbow domination problem on trees. For a given tree T, we also determine the smallest k such that gamma(rk)(T) = vertical bar V(T)vertical bar. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:8 / 12
页数:5
相关论文
共 9 条
  • [1] Bresar B., 2005, Electron. Not. Discrete Math., V22, P233
  • [2] Bresar B, 2008, TAIWAN J MATH, V12, P213
  • [3] On the 2-rainbow domination in graphs
    Bresar, Bostjan
    Sumenjak, Tadeja Kraner
    [J]. DISCRETE APPLIED MATHEMATICS, 2007, 155 (17) : 2394 - 2400
  • [4] Chang G.J., 1998, HDB COMBINATORIAL OP, V3, P339
  • [5] Hartnell B, 1998, MG TXB PUR APPL MATH, V209, P163
  • [6] Hartnell B. L., 2004, Discussiones Mathematicae Graph Theory, V24, P389, DOI 10.7151/dmgt.1238
  • [7] Haynes T.W., 1998, Chapman & Hall/CRC Pure and Applied Mathematics
  • [8] Haynes TeresaW., 1998, Fundamental of Domination in Graphs
  • [9] Vizing V. G., 1968, Uspekhi Mat. Nauk, V23, P117