Submonolayer Quantum-Dot Lasers

被引:3
作者
Lingnau, Benjamin [1 ]
Luedge, Kathy [1 ,2 ]
Owschimikow, Nina [3 ]
机构
[1] Tech Univ Berlin, Inst Theoret Phys, Berlin, Germany
[2] Univ Auckland, Dept Phys, Auckland, New Zealand
[3] Tech Univ Berlin, Inst Opt & Atomare Phys, Berlin, Germany
来源
PHYSICS AND SIMULATION OF OPTOELECTRONIC DEVICES XXV | 2017年 / 10098卷
关键词
Quantum dots; semiconductor lasers; novel gain materials; DEPOSITION; GROWTH; MODE;
D O I
10.1117/12.2252754
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Active media based on submonolayer (SML) quantum-dots are a novel gain material that potentially combines the high gain of semiconductor quantum-wells with the ultrafast gain recovery of Stranski-Krastanov quantumdots. By comparison of theory and experiment, we find an ultrafast gain recovery timescale well below one picosecond, along with a high optical gain. We investigate SML lasers theoretically and provide comparisons with conventional quantum-dot devices. We find a substantial increase in small-signal bandwidth and large-signal modulation capability. Our results show that semiconductor submonolayer laser and amplifier devices are promising candidates for high-speed optoelectronics as well as integrated photonics applications.
引用
收藏
页数:7
相关论文
共 23 条
[1]   Strong-coupling regime for quantum boxes in pillar microcavities:: Theory [J].
Andreani, LC ;
Panzarini, G ;
Gérard, JM .
PHYSICAL REVIEW B, 1999, 60 (19) :13276-13279
[2]   Temperature-Dependent Characteristics of Single-Mode InAs Submonolayer Quantum-Dot Lasers [J].
Arsenijevic, Dejan ;
Liu, Chongyang ;
Payusov, Alexey ;
Stubenrauch, Mirko ;
Bimberg, Dieter .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2012, 24 (11) :906-908
[3]   Saturation and noise properties of quantum-dot optical amplifiers [J].
Berg, TW ;
Mork, J .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 2004, 40 (11) :1527-1539
[4]   Control over the parameters of InAs-GaAs quantum dot arrays in the Stranski-Krastanow growth mode [J].
Cherkashin, NA ;
Maksimov, MV ;
Makarov, AG ;
Shchukin, VA ;
Ustinov, VM ;
Lukovskaya, NV ;
Musikhin, YG ;
Cirlin, GE ;
Bert, NA ;
Alferov, ZI ;
Ledentsov, NN ;
Bimberg, D .
SEMICONDUCTORS, 2003, 37 (07) :861-865
[5]  
EGOROV AY, 1994, SEMICONDUCTORS+, V28, P363
[6]   Impact of Coulomb Scattering on the Ultrafast Gain Recovery in InGaAs Quantum Dots [J].
Gomis-Bresco, J. ;
Dommers, S. ;
Temnov, V. V. ;
Woggon, U. ;
Laemmlin, M. ;
Bimberg, D. ;
Malic, E. ;
Richter, M. ;
Schoell, E. ;
Knorr, A. .
PHYSICAL REVIEW LETTERS, 2008, 101 (25)
[7]   Heterodimensional charge-carrier confinement in stacked submonolayer InAs in GaAs [J].
Harrison, S. ;
Young, M. P. ;
Hodgson, P. D. ;
Young, R. J. ;
Hayne, M. ;
Danos, L. ;
Schliwa, A. ;
Strittmatter, A. ;
Lenz, A. ;
Eisele, H. ;
Pohl, U. W. ;
Bimberg, D. .
PHYSICAL REVIEW B, 2016, 93 (08)
[8]   Fast gain and phase recovery of semiconductor optical amplifiers based on submonolayer quantum dots [J].
Herzog, Bastian ;
Owschimikow, Nina ;
Schulze, Jan-Hindrik ;
Rosales, Ricardo ;
Kaptan, Yuecel ;
Kolarczik, Mirco ;
Switaiski, Thomas ;
Strittmatter, Andre ;
Bimberg, Dieter ;
Pohl, Udo W. ;
Woggon, Ulrike .
APPLIED PHYSICS LETTERS, 2015, 107 (20)
[9]   Structural and luminescence characteristics of cycled submonolayer InAs/GaAs quantum dots with room-temperature emission at 1.3 μm [J].
Krishna, S ;
Zhu, D ;
Xu, J ;
Linder, KK ;
Qasaimeh, O ;
Bhattacharya, P ;
Huffaker, DL .
JOURNAL OF APPLIED PHYSICS, 1999, 86 (11) :6135-6138
[10]   Submonolayer quantum dots for high speed surface emitting lasers [J].
Ledentsov, N. N. ;
Bimberg, D. ;
Hopfer, F. ;
Mutig, A. ;
Shchukin, V. A. ;
Savel'ev, A. V. ;
Fiol, G. ;
Stock, E. ;
Eisele, H. ;
Daehne, M. ;
Gerthsen, D. ;
Fischer, U. ;
Litvinov, D. ;
Rosenauer, A. ;
Mikhrin, S. S. ;
Kovsh, A. R. ;
Zakharov, N. D. ;
Werner, P. .
NANOSCALE RESEARCH LETTERS, 2007, 2 (09) :417-429