The hyperspace of hereditarily decomposable subcontinua of a cube is the Hurewicz set

被引:4
作者
Samulewicz, Alicja [1 ]
机构
[1] Silesian Tech Univ, Fac Math & Phys, Inst Math, PL-44101 Gliwice, Poland
关键词
analytic set; absorber; continuum; hereditarily decomposable; Hilbert cube; Hurewicz set; hyperspace; pseudoarc;
D O I
10.1016/j.topol.2005.07.019
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The hyperspaces of hereditarily decomposable continua and of decomposable subcontinua without pseudoarcs in the cube of dimension greater than 2 are homeomorphic to the Hurewicz set of all nonempty countable closed subsets of the unit interval [0.1]. Moreover, in Such a cube. all indecomposable subcontinua form a homotopy dense subset of the hyperspace of(nonempty) subcontinua. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:985 / 995
页数:11
相关论文
共 12 条
[1]  
[Anonymous], 1978, FUND MATH
[2]  
Banakh T., 1996, ABSORBING SETS INFIN
[3]   TOPOLOGICAL CHARACTERIZATION OF THE SPACE OF CONTINUOUS-FUNCTIONS [J].
CAUTY, R .
FUNDAMENTA MATHEMATICAE, 1991, 138 (01) :35-58
[4]   Complexity of hereditarily decomposable continua [J].
Darji, UB .
TOPOLOGY AND ITS APPLICATIONS, 2000, 103 (03) :243-248
[5]  
GLADDINES H, 1993, FUND MATH, V142, P173
[6]  
Illanes A., 1999, Hyperspaces: Fundamental and Recent Advances
[7]  
Kechris, 2012, CLASSICAL DESCRIPTIV, V156
[8]  
Knaster B., 1922, FUND MATH, V3, P247
[9]   More non-analytic classes of continua [J].
Krupski, P .
TOPOLOGY AND ITS APPLICATIONS, 2003, 127 (03) :299-312
[10]  
Lewis W, 1999, BOL SOC MAT MEX, V5, P25