Exploration of Lewis basicity and oxygen reduction reaction activity in plasma-tailored nitrogen-doped carbon electrocatalysts

被引:45
|
作者
Li, Oi Lun [1 ]
Prabakar, Kandasamy [2 ]
Kaneko, Amane [3 ]
Park, Hyun [4 ]
Ishizaki, Takahiro [3 ]
机构
[1] Pusan Natl Univ, Sch Mat Sci & Engn, 30 Jangjeon Dong, Busan 46241, South Korea
[2] Pusan Natl Univ, Dept Elect & Comp Engn, 30 Jangjeon Dong, Busan 46241, South Korea
[3] Shibaura Inst Technol, Dept Mat Sci & Engn, Tokyo, Japan
[4] Pusan Natl Univ, Dept Naval Architecture & Ocean Engn, 30 Jangjeon Dong, Busan 46241, South Korea
基金
新加坡国家研究基金会;
关键词
Selective nitrogen-doped carbon; Oxygen reduction reaction; Lewis base catalyst; Plasma synthesis; Amino-N bonding; AIR BATTERIES; GRAPHENE; CATALYST; SITES; NANOSHEETS; NANOTUBES; MECHANISM; OXIDE; DOTS; ORR;
D O I
10.1016/j.cattod.2019.02.058
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
The ORR electrocatalytic activity of nitrogen-doped carbon (N-doped carbon) is highly related to the type of nitrogen bondings, which is originated to the charge transfer between carbon and nitrogen. Based on Lewis theory of acid-base reactions, N-doped carbon can be defined as a Lewis base catalyst. The lone pair of electrons on the nitrogen atom mainly contributed to its reactivity, or in other terms, Lewis basicity. Herein, we fabricated selective amino-N, pyrrolic-N, nitrile-N, and oxide-N in N-doped carbon systematically, as well as compared their electrocatalytic activities and Lewis basicities for the first time. Based on the molecular structure of four starting precursors, aniline (C6H5NH2), pyrrole (C4H5N), benzonitrile (C5H7N), and nitrobenzene (C6H5NO2) were successfully formed as selective amino-N, pyrrolic-N, nitrile-N and oxide-N, respectively, via a room temperature plasma synthesis process. From the electrochemical performance, N-doped carbon catalyst with highly selective amino-N demonstrated comparatively higher ORR activity in terms of ORR onset potential and current density. Also, we confirmed the correlation between the ORR activity and Lewis basicity of various N moieties. Based on the electronic structural properties, amino-N with the most superior ORR activity also exhibited the highest basic strength among the studied C-N bonding structure. This study provided the relationship among the structural properties, Lewis basicity, and electrocatalytic activity of selective N-doped carbon.
引用
收藏
页码:102 / 109
页数:8
相关论文
共 50 条
  • [21] Activity and active sites of nitrogen-doped carbon nanotubes for oxygen reduction reaction
    Altansukh Dorjgotov
    Jinhee Ok
    YuKwon Jeon
    Seong-Ho Yoon
    Yong Gun Shul
    Journal of Applied Electrochemistry, 2013, 43 : 387 - 397
  • [22] The role of iron in the preparation and oxygen reduction reaction activity of nitrogen-doped carbon
    Yang, Dae-Soo
    Song, Min Young
    Singh, Kiran Pal
    Yu, Jong-Sung
    CHEMICAL COMMUNICATIONS, 2015, 51 (12) : 2450 - 2453
  • [23] Electrochemical Catalytic Activity for Oxygen Reduction Reaction of Nitrogen-Doped Carbon Nanofibers
    Kim, Jiyoung
    Lim, Seongyop
    Kim, Sang-Kyung
    Peck, Dong-Hyun
    Lee, Byungrok
    Yoon, Seong-Ho
    Jung, Doohwan
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2011, 11 (07) : 6350 - 6358
  • [24] Platinum nanoparticles supported on nitrogen-doped carbons as electrocatalysts for oxygen reduction reaction
    E. A. Moguchikh
    K. O. Paperzh
    A. A. Alekseenko
    E. N. Gribov
    N. Yu. Tabachkova
    N. V. Maltseva
    A. G. Tkachev
    E. A. Neskoromnaya
    A. V. Melezhik
    V. V. Butova
    O. I. Safronenko
    V. E. Guterman
    Journal of Applied Electrochemistry, 2022, 52 : 231 - 246
  • [25] Platinum nanoparticles supported on nitrogen-doped carbons as electrocatalysts for oxygen reduction reaction
    Moguchikh, E. A.
    Paperzh, K. O.
    Alekseenko, A. A.
    Gribov, E. N.
    Tabachkova, N. Yu
    Maltseva, N., V
    Tkachev, A. G.
    Neskoromnaya, E. A.
    Melezhik, A., V
    Butova, V. V.
    Safronenko, O., I
    Guterman, V. E.
    JOURNAL OF APPLIED ELECTROCHEMISTRY, 2022, 52 (02) : 231 - 246
  • [26] Metal-free nitrogen-doped carbon nanoribbons as highly efficient electrocatalysts for oxygen reduction reaction
    Huang, Jinzhen
    Han, Jiecai
    Gao, Tangling
    Zhang, Xinghong
    Li, Jiajie
    Li, Zhenjiang
    Xu, Ping
    Song, Bo
    CARBON, 2017, 124 : 34 - 41
  • [27] Rational design and construction of nanoporous iron- and nitrogen-doped carbon electrocatalysts for oxygen reduction reaction
    Tan, Haibo
    Tang, Jing
    Kim, Jeonghun
    Kaneti, Yusuf Valentino
    Kang, Yong-Mook
    Sugahara, Yoshiyuki
    Yamauchi, Yusuke
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (04) : 1380 - 1393
  • [28] Activation and Stabilization of Nitrogen-Doped Carbon Nanotubes as Electrocatalysts in the Oxygen Reduction Reaction at Strongly Alkaline Conditions
    Zhao, Anqi
    Masa, Justus
    Schuhmann, Wolfgang
    Xia, Wei
    JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (46): : 24283 - 24291
  • [29] Metal-Free Nitrogen-Doped Carbon Foam Electrocatalysts for the Oxygen Reduction Reaction in Acid Solution
    Liu, J.
    Yu, S.
    Daio, T.
    Ismail, M. S.
    Sasaki, K.
    Lyth, S. M.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2016, 163 (09) : F1049 - F1054
  • [30] Template-free synthesis of hollow nitrogen-doped carbon as efficient electrocatalysts for oxygen reduction reaction
    Wu, Rui
    Chen, Siguo
    Zhang, Yuanliang
    Wang, Yao
    Ding, Wei
    Li, Li
    Qi, Xueqiang
    Shen, Xiu
    Wei, Zidong
    JOURNAL OF POWER SOURCES, 2015, 274 : 645 - 650