Smooth linearization of commuting circle diffeomorphisms

被引:25
作者
Fayad, Bassam [1 ]
Khanin, Kostantin [2 ]
机构
[1] Univ Paris 13, Inst Galilee, F-93439 Villetaneuse, France
[2] Univ Toronto, Dept Math, Toronto, ON M5S 2E4, Canada
关键词
CONJUGATION;
D O I
10.4007/annals.2009.170.961
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that a finite number of commuting diffeomorphisms with simultaneously Diophantine rotation numbers are smoothly conjugated to rotations. This solves a problem raised by Moser.
引用
收藏
页码:961 / 980
页数:20
相关论文
共 13 条
[1]  
[Anonymous], I HAUTES ETUDES SCI
[2]  
[Anonymous], 1995, ENCY MATH APPL
[3]  
Arnold VI., 1961, IZV AKAD NAUK SSSR M, V25, P21
[4]   Local rigidity of actions of higher rank Abelian groups and Kam method [J].
Damjanovic, D ;
Katok, A .
ELECTRONIC RESEARCH ANNOUNCEMENTS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 10 :142-154
[5]  
FAYAD B, DIFFERENTIA IN PRESS
[6]   ON C-2-DIFFEOMORPHISMS OF THE CIRCLE WHICH ARE OF TYPE-III [J].
HAWKINS, J ;
SCHMIDT, K .
INVENTIONES MATHEMATICAE, 1982, 66 (03) :511-518
[7]   THE ABSOLUTE CONTINUITY OF THE CONJUGATION OF CERTAIN DIFFEOMORPHISMS OF THE CIRCLE [J].
KATZNELSON, Y ;
ORNSTEIN, D .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1989, 9 :681-690
[8]   THE DIFFERENTIABILITY OF THE CONJUGATION OF CERTAIN DIFFEOMORPHISMS OF THE CIRCLE [J].
KATZNELSON, Y ;
ORNSTEIN, D .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1989, 9 :643-680
[9]   A NEW PROOF OF HERMAN,M. THEOREM [J].
KHANIN, KM ;
SINAI, YG .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1987, 112 (01) :89-101
[10]  
KHANIN KM, 1989, USP MAT NAUK, V44, P57