Comprehensive serum proteomic analysis in early endometrial cancer

被引:11
作者
Uyar, Denise S. [1 ]
Huang, Yi-Wen [1 ]
Chesnik, Marla A. [2 ,3 ]
Doan, Ninh B. [4 ]
Mirza, Shama P. [5 ]
机构
[1] Med Coll Wisconsin, Dept Obstet & Gynecol, Milwaukee, WI 53226 USA
[2] Med Coll Wisconsin, Dept Biotechnol, Milwaukee, WI 53226 USA
[3] Med Coll Wisconsin, Bioengn Ctr, Milwaukee, WI 53226 USA
[4] Univ S Alabama, Dept Neurosurg, Montgomery, AL 36116 USA
[5] Univ Wisconsin, Dept Chem & Biochem, Milwaukee, WI 53211 USA
关键词
Serum protein biomarkers; Endometrial cancer; Spectral counting quantification; FAM83D;
D O I
10.1016/j.jprot.2020.104099
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Objective: Endometrial cancer is the most common gynecologic cancer and yet much is still unknown about this disease. Our goal was to identify unique biomarkers of disease by performing a comprehensive proteomic analysis of early stage, low-grade endometrial cancer through analysis of serum collected from patients pre- and post-definitive surgery. Methods: We used mass spectrometry (MS)-based proteomics to identify serum proteins from these patients. Serum samples from women undergoing hysterectomy with bilateral salpingo-oophorectomy for benign reasons served as control samples for the correlative studies. We then correlated our findings with The Cancer Genome Atlas (TCGA) database for additional confirmation. Results: The Ingenuity Pathway Analysis of proteins that were differentially expressed in endometrial cancer showed increased cell survival and decreased organismal death, the most common hallmarks of cancer. We identified over expression of FAM83D (family with sequence similarity 83, member D) in the serum of patients with early stage low-grade endometrial cancer and verified the same in the endometrial cancer cell lines and patient tumors. We also confirmed our hypothesis that FAM83D may serve as a biomarker for endometrial cancer in a cohort of patients with endometrial cancer from The Cancer Genome Atlas (TCGA) project. Conclusion: Comprehensive proteomic analysis is a feasible strategy for potential biomarker identification. Using this technique, FAM83D was identified as a candidate biomarker in early endometrial cancer in our patient samples and was not present in benign control samples. FAM83D has been associated with poor clinical outcomes in several human malignancies. Significance: Our manuscript describes an alternative approach to comprehensive protein analysis in a model pre and post tumor removal for a sample of patients with early endometrial cancer. The model is innovative and the findings of over expression FAM83D in this population of early cancer may be useful in the study of a disease where there are few biomarkers or targetable therapies.
引用
收藏
页数:8
相关论文
共 22 条
[1]   A cross-platform toolkit for mass spectrometry and proteomics [J].
Chambers, Matthew C. ;
Maclean, Brendan ;
Burke, Robert ;
Amodei, Dario ;
Ruderman, Daniel L. ;
Neumann, Steffen ;
Gatto, Laurent ;
Fischer, Bernd ;
Pratt, Brian ;
Egertson, Jarrett ;
Hoff, Katherine ;
Kessner, Darren ;
Tasman, Natalie ;
Shulman, Nicholas ;
Frewen, Barbara ;
Baker, Tahmina A. ;
Brusniak, Mi-Youn ;
Paulse, Christopher ;
Creasy, David ;
Flashner, Lisa ;
Kani, Kian ;
Moulding, Chris ;
Seymour, Sean L. ;
Nuwaysir, Lydia M. ;
Lefebvre, Brent ;
Kuhlmann, Frank ;
Roark, Joe ;
Rainer, Paape ;
Detlev, Suckau ;
Hemenway, Tina ;
Huhmer, Andreas ;
Langridge, James ;
Connolly, Brian ;
Chadick, Trey ;
Holly, Krisztina ;
Eckels, Josh ;
Deutsch, Eric W. ;
Moritz, Robert L. ;
Katz, Jonathan E. ;
Agus, David B. ;
MacCoss, Michael ;
Tabb, David L. ;
Mallick, Parag .
NATURE BIOTECHNOLOGY, 2012, 30 (10) :918-920
[2]   Proteomics and drug discovery in cancer [J].
Dias, Matheus H. ;
Kitano, Eduardo S. ;
Zelanis, Andre ;
Iwai, Leo K. .
DRUG DISCOVERY TODAY, 2016, 21 (02) :264-277
[3]   G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences [J].
Faul, Franz ;
Erdfelder, Edgar ;
Lang, Albert-Georg ;
Buchner, Axel .
BEHAVIOR RESEARCH METHODS, 2007, 39 (02) :175-191
[4]   Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses [J].
Faul, Franz ;
Erdfelder, Edgar ;
Buchner, Axel ;
Lang, Albert-Georg .
BEHAVIOR RESEARCH METHODS, 2009, 41 (04) :1149-1160
[5]   Integrated genomic characterization of endometrial carcinoma [J].
Getz, Gad ;
Gabriel, Stacey B. ;
Cibulskis, Kristian ;
Lander, Eric ;
Sivachenko, Andrey ;
Sougnez, Carrie ;
Lawrence, Mike ;
Kandoth, Cyriac ;
Dooling, David ;
Fulton, Robert ;
Fulton, Lucinda ;
Kalicki-Veizer, Joelle ;
McLellan, Michael D. ;
O'Laughlin, Michelle ;
Schmidt, Heather ;
Wilson, Richard K. ;
Ye, Kai ;
Ding, Li ;
Mardis, Elaine R. ;
Ally, Adrian ;
Balasundaram, Miruna ;
Birol, Inanc ;
Butterfield, Yaron S. N. ;
Carlsen, Rebecca ;
Carter, Candace ;
Chu, Andy ;
Chuah, Eric ;
Chun, Hye-Jung E. ;
Dhalla, Noreen ;
Guin, Ranabir ;
Hirst, Carrie ;
Holt, Robert A. ;
Jones, Steven J. M. ;
Lee, Darlene ;
Li, Haiyan I. ;
Marra, Marco A. ;
Mayo, Michael ;
Moore, Richard A. ;
Mungall, Andrew J. ;
Plettner, Patrick ;
Schein, Jacqueline E. ;
Sipahimalani, Payal ;
Tam, Angela ;
Varhol, Richard J. ;
Robertson, A. Gordon ;
Pashtan, Itai ;
Saksena, Gordon ;
Onofrio, Robert C. ;
Schumacher, Steven E. ;
Tabak, Barbara .
NATURE, 2013, 497 (7447) :67-73
[6]   Plasma Proteome Profiling to Assess Human Health and Disease [J].
Geyer, Philipp E. ;
Kulak, Nils A. ;
Pichler, Garwin ;
Holdt, Lesca M. ;
Teupser, Daniel ;
Mann, Matthias .
CELL SYSTEMS, 2016, 2 (03) :185-195
[7]   Visualize: A free and open source multifunction tool for proteomics data analysis [J].
Halligan, Brian D. ;
Greene, Andrew S. .
PROTEOMICS, 2011, 11 (06) :1058-1063
[8]   Low Cost, Scalable Proteomics Data Analysis Using Amazon's Cloud Computing Services and Open Source Search Algorithms [J].
Halligan, Brian D. ;
Geiger, Joey F. ;
Vallejos, Andrew K. ;
Greene, Andrew S. ;
Twigger, Simon N. .
JOURNAL OF PROTEOME RESEARCH, 2009, 8 (06) :3148-3153
[9]   Hallmarks of Cancer: The Next Generation [J].
Hanahan, Douglas ;
Weinberg, Robert A. .
CELL, 2011, 144 (05) :646-674
[10]   Comprehensive characterization of glioblastoma tumor tissues for biomarker identification using mass spectrometry-based label-free quantitative proteomics [J].
Heroux, Maxime S. ;
Chesnik, Marla A. ;
Halligan, Brian D. ;
Al-Gizawiy, Mona ;
Connelly, Jennifer M. ;
Mueller, Wade M. ;
Rand, Scott D. ;
Cochran, Elizabeth J. ;
LaViolette, Peter S. ;
Malkin, Mark G. ;
Schmainda, Kathleen M. ;
Mirza, Shama P. .
PHYSIOLOGICAL GENOMICS, 2014, 46 (13) :467-481