Sustainable product line design considering a multi-lifecycle approach

被引:37
作者
Aydin, Ridvan [1 ]
Badurdeen, Fazleena [2 ,3 ]
机构
[1] Amer Univ Middle East, Coll Engn & Technol, Kuwait, Kuwait
[2] Inst Sustainable Mfg, Lexington, KY 40506 USA
[3] Univ Kentucky, Dept Mech Engn, Lexington, KY 40506 USA
关键词
Product line design; Sustainability; Multiple lifecycles; Reuse; Remanufacturing; MODEL; CONFIGURATION; DECISION; PRICE; OPTIMIZATION; METHODOLOGY; UNCERTAINTY; NEWSVENDOR; DEMAND;
D O I
10.1016/j.resconrec.2019.06.014
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Global awareness on product lifecycle issues and competitive advantages of implementing end-of-life (EoL) recovery strategies (i.e., reuse, remanufacturing, and recycling) have driven companies to develop more sustainable product designs. Designing a product line involves developing variants of a product to address needs of different market segments. Sharing of same types of components between variants when feasible can lead to lower product cost and improved manufacturing efficiency. Prior research has considered many aspects related to sustainable product line design. However, none of them have comprehensively addressed the consideration of multi-lifecycle, closed-loop material flow for sustainable product line design; studies that incorporate pricing decisions while simultaneously considering economic and environmental objectives are also lacking. In this study, a novel approach for sustainable product line design considering the multiple lifecycle approach and EoL recovery strategies is proposed. An optimization model with economic and environmental performance objectives is developed to determine the designs and selling prices of new and hybrid products. Dynamic demand models based on the diffusion function of time and price are developed to incorporate the price-sensitivity of demand multiple lifecycles. The application of the approach is demonstrated using an industrial case study to identify the sustainable product line design of toner cartridges. The Pareto optimal solutions obtained show that the proposed methodology can identify more sustainable product line designs. The new designs have much higher total lifecycle profit, energy use, and water use compared to baseline designs that do not follow a closed-loop, multi-lifecycle flow.
引用
收藏
页码:727 / 737
页数:11
相关论文
共 42 条
[41]   Joint decision of product configuration and remanufacturing for product family design [J].
Wu, Zhiqiao ;
Kwong, C. K. ;
Lee, C. K. M. ;
Tang, Jiafu .
INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 2016, 54 (15) :4689-4702
[42]   Multi-period design and planning of closed-loop supply chains with uncertain supply and demand [J].
Zeballos, Lius J. ;
Mendez, Carlos A. ;
Barbosa-Povoa, Ana P. ;
Novais, Augusto Q. .
COMPUTERS & CHEMICAL ENGINEERING, 2014, 66 :151-164