An analytic approach to infinite-dimensional continuity and Fokker-Planck-Kolmogorov equations

被引:0
作者
Bogachev, Vladimir I. [1 ]
Da Prato, Giuseppe [2 ]
Roeckner, Michael [3 ]
Shaposhnikov, Stanislav V.
机构
[1] Moscow MV Lomonosov State Univ, Dept Mech & Math, Moscow 119991, Russia
[2] Scuola Normale Super Pisa, I-56126 Pisa, Italy
[3] Univ Bielefeld, Fak Math, D-33501 Bielefeld, Germany
关键词
PARABOLIC EQUATIONS; TRANSITION-PROBABILITIES; UNIQUENESS; MARTINGALE; REGULARITY; EXISTENCE;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a new uniqueness result for solutions to Fokker-Planck-Kolmogorov (FPK) equations for probability measures on infinite-dimensional spaces. We consider infinite-dimensional drifts that admit certain finite-dimensional approximations. In contrast to much of the previous work on FPK-equations in infinite dimensions, we include cases with non-constant coefficients in the second order part and also include degenerate cases where these coefficients can even be zero. A new existence result is also proved. Some applications to FPK equations associated with SPDE's are presented.
引用
收藏
页码:983 / 1023
页数:41
相关论文
共 35 条
[1]   DIRICHLET FORMS AND DIFFUSION PROCESSES ON RIGGED HILBERT SPACES [J].
ALBEVERIO, S ;
HOEGHKROHN, R .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1977, 40 (01) :1-57
[2]  
[Anonymous], 2007, CLASSICS MATH
[3]  
[Anonymous], 2004, An Introduction to Harmonic Analysis, DOI DOI 10.1017/CBO9781139165372
[4]  
[Anonymous], 1983, PARTIAL DIFFERENTIAL
[5]   Parabolic equations for measures on infinite-dimensional spaces [J].
Bogachev, V. I. ;
Da Prato, G. ;
Roeckner, M. .
DOKLADY MATHEMATICS, 2008, 78 (01) :544-549
[6]   On parabolic equations for measures [J].
Bogachev, V. I. ;
Da Prato, G. ;
Roeckner, M. .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2008, 33 (03) :397-418
[7]   Uniqueness of solutions to weak parabolic equations for measures [J].
Bogachev, V. I. ;
Da Prato, G. ;
Roeckner, M. ;
Stannat, W. .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2007, 39 :631-640
[8]   On the uniqueness of solutions to continuity equations [J].
Bogachev, V. I. ;
Da Prato, G. ;
Roeckner, M. ;
Shaposhnikov, S. V. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (08) :3854-3873
[9]   Elliptic and parabolic equations for measures [J].
Bogachev, V. I. ;
Krylov, N. V. ;
Roeckner, M. .
RUSSIAN MATHEMATICAL SURVEYS, 2009, 64 (06) :973-1078
[10]   POSITIVE DENSITIES OF TRANSITION PROBABILITIES OF DIFFUSION PROCESSES [J].
Bogachev, V. I. ;
Roeckner, M. ;
Shaposhnikov, S. V. .
THEORY OF PROBABILITY AND ITS APPLICATIONS, 2009, 53 (02) :194-215