Topological quantum field theory with corners based on the Kauffman bracket

被引:9
作者
Gelca, R [1 ]
机构
[1] ROMANIAN ACAD,INST MATH,BUCHAREST 70700,ROMANIA
关键词
topological quantum field theory; Kauffman bracket;
D O I
10.1007/s000140050013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We describe the construction of a topological quantum field theory with corners based on the Kauffman bracket, that underlies the smooth theory of Lickorish, Blanchet, Habegger, Masbaum and Vogel. We also exhibit some properties of invariants of 3-manifolds with boundary.
引用
收藏
页码:216 / 243
页数:28
相关论文
共 25 条
[11]   A POLYNOMIAL INVARIANT FOR KNOTS VIA VONNEUMANN-ALGEBRAS [J].
JONES, VFR .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 12 (01) :103-111
[12]  
KAUFFMAN L, 1991, KNOTS PHYSICS
[13]  
KAUFFMAN LH, 1987, TOPOLOGY, V26, P395
[14]   CALCULUS FOR FRAMED LINKS IN S3 [J].
KIRBY, R .
INVENTIONES MATHEMATICAE, 1978, 45 (01) :35-56
[15]  
KIRBY R, 1991, INVENT MATH, V105, P547
[16]   TOPOLOGICAL INVARIANTS FOR 3-MANIFOLDS USING REPRESENTATIONS OF MAPPING CLASS-GROUPS .1. [J].
KOHNO, T .
TOPOLOGY, 1992, 31 (02) :203-230
[17]  
Lickorish W. B. R., 1993, J KNOT THEOR RAMIF, V2, P171
[18]   SKEINS AND HANDLEBODIES [J].
LICKORISH, WBR .
PACIFIC JOURNAL OF MATHEMATICS, 1993, 159 (02) :337-349
[19]   CLASSICAL AND QUANTUM CONFORMAL FIELD-THEORY [J].
MOORE, G ;
SEIBERG, N .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1989, 123 (02) :177-254
[20]   INVARIANTS OF 3-MANIFOLDS VIA LINK POLYNOMIALS AND QUANTUM GROUPS [J].
RESHETIKHIN, N ;
TURAEV, VG .
INVENTIONES MATHEMATICAE, 1991, 103 (03) :547-597