STACKY GKM GRAPHS AND ORBIFOLD GROMOV-WITTEN THEORY

被引:0
作者
Liu, Chiu-Chu Melissa [1 ]
Sheshmani, Artan [2 ,3 ,4 ]
机构
[1] Columbia Univ, Dept Math, New York, NY 10027 USA
[2] Harvard Univ, Ctr Math Sci & Applicat, Dept Math, 20 Garden St,Room 207, Cambridge, MA 02139 USA
[3] Aarhus Univ, Inst Matemat, Ny Munkegade 118,Bldg 1530,319, DK-8000 Aarhus C, Denmark
[4] Natl Res Univ, Higher Sch Econ, Lab Mirror Symmetry, NRU HSE, 6 Usacheva Str, Moscow 119048, Russia
关键词
Gromov-Witten invariants; Deligne-Mumford stacks; orbifolds; equivariant cohomology; localization; VIRTUAL MODULI CYCLES; INTERSECTION THEORY; HURWITZ NUMBERS; STABLE CURVES; MATHEMATICAL-THEORY; LOCALIZATION; INVARIANTS; SPACE; COHOMOLOGY; PROJECTIVITY;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A smooth GKM stack is a smooth Deligne-Mumford stack equipped with an action of an algebraic torus T, with only finitely many zero-dimensional and one-dimensional orbits. (i) We define the stacky GKM graph of a smooth GKM stack, under the mild assumption that any one-dimensional T-orbit closure contains at least one T fixed point. The stacky GKM graph is a decorated graph which contains enough information to reconstruct the T-equivariant formal neighborhood of the 1-skeleton (union of zero-dimensional and onedimensional T-orbits) as a formal smooth DM stack equipped with a T-action. (ii) We axiomize the definition of a stacky GKM graph and introduce abstract stacky GKM graphs which are more general than stacky GKM graphs of honest smooth GKM stacks. From an abstract GKM graph we construct a formal smooth GKM stack. (iii) We define equivariant orbifold Gromov-Witten invariants of smooth GKM stacks, as well as formal equivariant orbifold Gromov-Witten invariants of formal smooth GKM stacks. These invariants can be computed by virtual localization and depend only the stacky GKM graph or the abstract stacky GKM graph. Formal equivariant orbifold GromovWitten invariants of the stacky GKM graph of a smooth GKM stack X are refinements of equivariant orbifold Gromov-Witten invariants of X.
引用
收藏
页码:855 / 902
页数:48
相关论文
共 69 条
[1]  
Abramovich D., 2001, CONT MATH, V310, P1
[2]  
Abramovich D, 2008, AM J MATH, V130, P1337
[3]   THE MOMENT MAP AND EQUIVARIANT CO-HOMOLOGY [J].
ATIYAH, MF ;
BOTT, R .
TOPOLOGY, 1984, 23 (01) :1-28
[4]   The intrinsic normal cone [J].
Behrend, K ;
Fantechi, B .
INVENTIONES MATHEMATICAE, 1997, 128 (01) :45-88
[5]   Gromov-Witten invariants in algebraic geometry [J].
Behrend, K .
INVENTIONES MATHEMATICAE, 1997, 127 (03) :601-617
[6]   Stacks of stable maps and Gromov-Witten invariants [J].
Behrend, K ;
Manin, Y .
DUKE MATHEMATICAL JOURNAL, 1996, 85 (01) :1-60
[7]   Uniformization of Defigne-Mumford curves [J].
Behrend, Kai ;
Noohi, Behrang .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2006, 599 :111-153
[8]  
Behrend Kai., 2002, Quantum Cohomology, V1776, P3
[9]   The orbifold Chow ring of toric Deligne-Mumford stacks [J].
Borisov, LA ;
Chen, L ;
Smith, GG .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 18 (01) :193-215
[10]   The Donaldson-Thomas partition function of the banana manifold [J].
Bryan, Jim .
ALGEBRAIC GEOMETRY, 2021, 8 (02) :133-170