The Cotton GhWRKY91 Transcription Factor Mediates Leaf Senescence and Responses to Drought Stress in Transgenic Arabidopsis thaliana

被引:40
|
作者
Gu, Lijiao [1 ]
Ma, Qiang [1 ]
Zhang, Chi [1 ]
Wang, Congcong [1 ]
Wei, Hengling [1 ]
Wang, Hantao [1 ]
Yu, Shuxun [1 ]
机构
[1] CAAS, Inst Cotton Res, State Key Lab Cotton Biol, Anyang, Peoples R China
来源
关键词
GhWRKY91; leaf senescence; abscisic acid; drought; GhWRKY17; cotton; NEGATIVE REGULATOR; PLANT SENESCENCE; SALT STRESS; WRKY GENE; ACID; EXPRESSION; PROLINE; OVEREXPRESSION; DEGRADATION; RESISTANCE;
D O I
10.3389/fpls.2019.01352
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
WRKY transcription factors (TFs) play essential roles in the plant response to leaf senescence and abiotic stress. However, the WRKY TFs involved in leaf senescence and stress tolerance in cotton (Gossypium hirsutum L.) are still largely unknown. In this study, a WRKY gene, GhWRKY91, was isolated and thoroughly characterized. Transcriptional activity assays showed that GhWRKY91 could activate transcription in yeast. The expression pattern of GhWRKY91 during leaf senescence, and in response to abscisic acid (ABA) and drought stress was evaluated. beta-Glucuronidase (GUS) activity driven by the GhWRKY91 promoter in transgenic Arabidopsis was reduced upon exposure to ABA and drought treatments. Constitutive expression of GhWRKY91 in Arabidopsis delayed natural leaf senescence. GhWRKY91 transgenic plants exhibited increased drought tolerance and presented delayed drought-induced leaf senescence, as accompanied by reinforced expression of stress-related genes and attenuated expression of senescence-associated genes (SAGs). Yeast one-hybrid (Y1H) assays and electrophoretic mobility shift assays (EMSAs) revealed that GhWRKY91 directly targets GhWRKY17, a gene associated with ABA signals and reactive oxygen species (ROS) production. A transient dual-luciferase reporter assay demonstrated that GhWRKY91 activated the expression of GhWRKY17. Our results suggest that GhWRKY91 might negatively regulate natural and stress-induced leaf senescence and provide a foundation for further functional studies on leaf senescence and the stress response in cotton.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] ABO3, a WRKY transcription factor, mediates plant responses to abscisic acid and drought tolerance in Arabidopsis
    Ren, Xiaozhi
    Chen, Zhizhong
    Liu, Yue
    Zhang, Hairong
    Zhang, Min
    Liu, Qian
    Hong, Xuhui
    Zhu, Jian-Kang
    Gong, Zhizhong
    PLANT JOURNAL, 2010, 63 (03): : 417 - 429
  • [32] WRKY42 transcription factor positively regulates leaf senescence through modulating SA and ROS synthesis in Arabidopsis thaliana
    Niu, Fangfang
    Cui, Xing
    Zhao, Peiyu
    Sun, Mengting
    Yang, Bo
    Deyholos, Michael K.
    Li, Ye
    Zhao, Xinjie
    Jiang, Yuan-Qing
    PLANT JOURNAL, 2020, 104 (01): : 171 - 184
  • [33] PhePLATZ1, a PLATZ transcription factor in moso bamboo (Phyllostachys edulis), improves drought resistance of transgenic Arabidopsis thaliana
    Zhang, Kaimei
    Lan, Yangang
    Wu, Min
    Wang, Linna
    Liu, Hongxia
    Xiang, Yan
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2022, 186 : 121 - 134
  • [34] Molecular Cloning and Characterization of MbMYB108, a Malus baccata MYB Transcription Factor Gene, with Functions in Tolerance to Cold and Drought Stress in Transgenic Arabidopsis thaliana
    Yao, Chunya
    Li, Wenhui
    Liang, Xiaoqi
    Ren, Chuankun
    Liu, Wanda
    Yang, Guohui
    Zhao, Mengfei
    Yang, Tianyu
    Li, Xingguo
    Han, Deguo
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (09)
  • [35] The MYB96 Transcription Factor Mediates Abscisic Acid Signaling during Drought Stress Response in Arabidopsis
    Seo, Pil Joon
    Xiang, Fengning
    Qiao, Meng
    Park, Ju-Young
    Lee, Young Na
    Kim, Sang-Gyu
    Lee, Yong-Hwan
    Park, Woong June
    Park, Chung-Mo
    PLANT PHYSIOLOGY, 2009, 151 (01) : 275 - 289
  • [36] Miscanthus NAC transcription factor MlNAC12 positively mediates abiotic stress tolerance in transgenic Arabidopsis
    Yang, Xuanwen
    He, Kang
    Chi, Xiaoyuan
    Chai, Guohua
    Wang, Yiping
    Jia, Chunlin
    Zhang, Hongpeng
    Zhou, Gongke
    Hu, Ruibo
    PLANT SCIENCE, 2018, 277 : 229 - 241
  • [37] Leaf Age-Dependent Photosystem II Photochemistry and Oxidative Stress Responses to Drought Stress in Arabidopsis thaliana Are Modulated by Flavonoid Accumulation
    Sperdouli, Ilektra
    Moustaka, Julietta
    Ouzounidou, Georgia
    Moustakas, Michael
    MOLECULES, 2021, 26 (14):
  • [38] A novel NAC transcription factor from Haloxylon ammodendron promotes reproductive growth in Arabidopsis thaliana under drought stress
    Liang, Jianshun
    Liu, Xiashun
    Xu, Lei
    Mu, Rongbo
    Shen, Nengshuang
    Li, Shanshan
    Cheng, Cong
    Ren, Yanping
    Ma, Li
    Wang, Bo
    Yao, Zhengpei
    Zhang, Hua
    ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2024, 228
  • [39] NAC Transcription Factor TwNAC01 Positively Regulates Drought Stress Responses in Arabidopsis and Triticale
    Wang, Meng
    Ren, Li-Tong
    Wei, Xiao-Yong
    Ling, Yue-Ming
    Gu, Hai-Tao
    Wang, Shan-Shan
    Ma, Xue-Feng
    Kong, Guang-Chao
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [40] TaWRKY71, a WRKY Transcription Factor from Wheat, Enhances Tolerance to Abiotic Stress in Transgenic Arabidopsis thaliana
    Q. Xu
    W. J. Feng
    H. R. Peng
    Z. F. Ni
    Q. X. Sun
    Cereal Research Communications, 2014, 42 : 47 - 57