Closed almost-periodic orbits in semiclassical quantization of generic polygons

被引:8
作者
Biswas, D [1 ]
机构
[1] Bhabha Atom Res Ctr, Div Theoret Phys, Bombay 400085, Maharashtra, India
来源
PHYSICAL REVIEW E | 2000年 / 61卷 / 05期
关键词
D O I
10.1103/PhysRevE.61.5129
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Periodic orbits are the central ingredients of modem semiclassical theories and corrections to these are generally nonclassical in origin. We show here that, for the class of generic polygonal billiards, the corrections are predominantly classical in origin owing to the contributions from closed almost-periodic (CAP) orbit families. Furthermore, CAP orbit families outnumber periodic families but have comparable weights. They are hence indispensable for semiclassical quantization.
引用
收藏
页码:5129 / 5133
页数:5
相关论文
共 18 条
  • [1] ROLE OF NONPERIODIC ORBITS IN THE SEMICLASSICAL QUANTIZATION OF THE TRUNCATED HYPERBOLA BILLIARD
    AURICH, R
    HESSE, T
    STEINER, F
    [J]. PHYSICAL REVIEW LETTERS, 1995, 74 (22) : 4408 - 4411
  • [2] STATE SCARRING BY GHOSTS OF PERIODIC-ORBITS
    BELLOMO, P
    UZER, T
    [J]. PHYSICAL REVIEW E, 1994, 50 (03): : 1886 - 1893
  • [3] CLOSED ORBITS AND REGULAR BOUND SPECTRUM
    BERRY, MV
    TABOR, M
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1976, 349 (1656): : 101 - 123
  • [4] Periodic orbits and spectral statistics of pseudointegrable billiards
    Biswas, D
    [J]. PHYSICAL REVIEW E, 1996, 54 (02) : R1044 - R1047
  • [5] Periodic orbits in polygonal billiards
    Biswas, D
    [J]. PRAMANA-JOURNAL OF PHYSICS, 1997, 48 (02): : 487 - 501
  • [6] BOGOMOLNY E, CHAODYN9910037
  • [7] Edge diffraction, trace formulae and the cardioid billiard
    Bruus, H
    Whelan, ND
    [J]. NONLINEARITY, 1996, 9 (04) : 1023 - 1047
  • [8] GIANNONI M, 1991, CHAOS QUANTUM PHYSIC
  • [9] Billiards in polygons: Survey of recent results
    Gutkin, E
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1996, 83 (1-2) : 7 - 26
  • [10] Gutzwiller MC, 1990, CHAOS CLASSICAL QUAN