Acyclic complexes related to noncommutative symmetric functions

被引:3
作者
Bergeron, F
Krob, D
机构
[1] UNIV QUEBEC,LACIM,MONTREAL,PQ H3C 3P8,CANADA
[2] UNIV PARIS 07,LITP CNRS,IBP,F-75251 PARIS 05,FRANCE
基金
加拿大自然科学与工程研究理事会;
关键词
noncommutative symmetric functions; complexes; ribbons;
D O I
10.1023/A:1008622519966
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we show how to endow the algebra of noncommutative symmetric functions with a natural structure of cochain complex which strongly relies on the combinatorics of ribbons, and we prove that the corresponding complexes are acyclic.
引用
收藏
页码:103 / 117
页数:15
相关论文
共 13 条
[1]  
DIPPER R, 1991, P LOND MATH SOC, V63, P161
[2]  
DUCHAMP G, 1994, CR ACAD SCI I-MATH, V319, P909
[3]  
DUCHAMP G, 1996, 96 LITP
[4]   NONCOMMUTATIVE SYMMETRICAL FUNCTIONS [J].
GELFAND, IM ;
KROB, D ;
LASCOUX, A ;
LECLERC, B ;
RETAKH, VS ;
THIBON, JY .
ADVANCES IN MATHEMATICS, 1995, 112 (02) :218-348
[5]  
Gessel I., 1984, Contemporary Mathematics, V34, P289
[6]  
KROB D, 1996, 96 LITP
[7]  
KROB D, 1995, 9507 LITP
[8]  
LECLERC B, 1995, NONCOMMUTATIVE CYCLI
[9]  
MACDONALD IG, 1995, SYMMETRIC FUNCTIONS
[10]   DUALITY BETWEEN QUASI-SYMMETRICAL FUNCTIONS AND THE SOLOMON DESCENT ALGEBRA [J].
MALVENUTO, C ;
REUTENAUER, C .
JOURNAL OF ALGEBRA, 1995, 177 (03) :967-982