The partitioning of trace elements between ilmenite, ulvospinel, annalcolite and silicate melts with implications for the early differentiation of the moon

被引:273
作者
Klemme, Stephan
Guenther, Detlef
Hametner, Kathrin
Prowatke, Stefan
Zack, Thomas
机构
[1] Univ Edinburgh, Sch Geosci, Grant Inst Geol, Edinburgh EH9 3JW, Midlothian, Scotland
[2] Univ Edinburgh, Ctr Sci Extreme Condit, Edinburgh EH9 3JZ, Midlothian, Scotland
[3] ETH, Anorgan Chem Lab, CH-8093 Zurich, Switzerland
[4] Univ Heidelberg, Inst Mineral, D-69120 Heidelberg, Germany
关键词
Fe-Ti oxides; ilmenite; armalcolite; Ulvospinel; trace element partitioning; orthopyroxene; moon; lunar magma ocean;
D O I
10.1016/j.chemgeo.2006.05.005
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Mineral/melt trace element partition coefficients for a large number of trace elements (Zr, Hf, Ta, Nb, V, Co, Cu, Zn, Sr, REE, Sb, Sri, Mo, Cr, W, U, Th) were determined experimentally for ilmenite (FeTiO3 ulvospinel (Fe2TiO4), minerals of the armalcolite solid solution (Fe,Mg)Ti2O5). The measured partition coefficients indicate that the high field strength elements (Zr, Hf, Nb, and Ta) and some transition metals (V, Cr, Co, Sn) are moderately compatible in iron-titanium oxides, whereas other elements (REE, Y, Sr, U, Th, Mo, Sb, and W) are strongly incompatible. The partition coefficients for U are always significantly higher than the Th partition coefficients which makes Fe-Ti oxides efficient in fractionating U from Th. Our data also indicate that ilmenite, and other iron-titanium oxides, are able to fractionate W from Hf, the latter of which is much more compatible. This makes the iron-titanium oxides very effective agents to influence Hf-W isotopic ratios during the evolution of the moon. In addition, we also present some trace element partition coefficients for iron and titanium-bearing orthopyroxene. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:251 / 263
页数:13
相关论文
共 94 条
[1]   Petrogenesis of lunar meteorite EET 96008 [J].
Anand, M ;
Taylor, LA ;
Neal, CR ;
Snyder, GA ;
Patchen, A ;
Sano, Y ;
Terada, K .
GEOCHIMICA ET COSMOCHIMICA ACTA, 2003, 67 (18) :3499-3518
[2]   Ilmenite, magnetite, and peraluminous Mesoproterozoic anorogenic granites of Laurentia and Baltica [J].
Anderson, JL ;
Morrison, J .
LITHOS, 2005, 80 (1-4) :45-60
[3]  
[Anonymous], ORIGIN EARTH
[4]   Ilmenite as a source for zirconium during high-grade metamorphism? Textural evidence from the Caledonides of western Norway and implications for zircon geochronology [J].
Bingen, B ;
Austrheim, H ;
Whitehouse, M .
JOURNAL OF PETROLOGY, 2001, 42 (02) :355-375
[5]   REINVESTIGATION AND APPLICATION OF OLIVINE-QUARTZ-ORTHOPYROXENE BAROMETRY [J].
BOHLEN, SR ;
ESSENE, EJ ;
BOETTCHER, AL .
EARTH AND PLANETARY SCIENCE LETTERS, 1980, 47 (01) :1-10
[6]   IRON-TITANIUM OXIDE MINERALS AND SYNTHETIC EQUIVALENTS [J].
BUDDINGTON, AF ;
LINDSLEY, DH .
JOURNAL OF PETROLOGY, 1964, 5 (02) :310-357
[7]   THE INFLUENCE OF OXYGEN FUGACITY ON TUNGSTEN AND MOLYBDENUM PARTITIONING BETWEEN SILICATE MELTS AND ILMENITE [J].
CANDELA, PA ;
BOUTON, SL .
ECONOMIC GEOLOGY AND THE BULLETIN OF THE SOCIETY OF ECONOMIC GEOLOGISTS, 1990, 85 (03) :633-640
[8]   CR-ZR-ARMALCOLITE-BEARING LAMPROITES OF CANCARIX, SE SPAIN [J].
CONTINI, S ;
VENTURELLI, G ;
TOSCANI, L ;
CAPEDRI, S ;
BARBIERI, M .
MINERALOGICAL MAGAZINE, 1993, 57 (387) :203-216
[9]   LOSS OF FE AND NA FROM A BASALTIC MELT DURING EXPERIMENTS USING THE WIRE-LOOP METHOD [J].
CORRIGAN, G ;
GIBB, FGF .
MINERALOGICAL MAGAZINE, 1979, 43 (325) :121-126
[10]   MARID (MICA-AMPHIBOLE-RUTILE-ILMENITE-DIOPSIDE) SUITE OF XENOLITHS IN KIMBERLITE [J].
DAWSON, JB ;
SMITH, JV .
GEOCHIMICA ET COSMOCHIMICA ACTA, 1977, 41 (02) :309-&