Applications of artificial intelligence in pancreatic and biliary diseases

被引:12
作者
Chen, Po-Ting [1 ]
Chang, Dawei [2 ]
Wu, Tinghui [2 ]
Wu, Ming-Shiang [3 ,4 ]
Wang, Weichung [2 ]
Liao, Wei-Chih [3 ,4 ]
机构
[1] Natl Taiwan Univ, Natl Taiwan Univ Hosp, Coll Med, Dept Med Imaging, Taipei, Taiwan
[2] Natl Taiwan Univ, Inst Appl Math Sci, Taipei, Taiwan
[3] Natl Taiwan Univ, Natl Taiwan Univ Hosp, Coll Med, Div Gastroenterol & Hepatol,Dept Internal Med, Taipei, Taiwan
[4] Natl Taiwan Univ, Coll Med, Internal Med, Taipei, Taiwan
关键词
Artificial intelligence; Biliary disease; Pancreas; DUCTAL ADENOCARCINOMA; TEXTURE ANALYSIS; EARLY RECURRENCE; PREDICTION; RADIOMICS; CHOLANGIOCARCINOMA; FEATURES;
D O I
10.1111/jgh.15380
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
The application of artificial intelligence (AI) in medicine has increased rapidly with respect to tasks including disease detection/diagnosis, risk stratification, and prognosis prediction. With recent advances in computing power and algorithms, AI has shown promise in taking advantage of vast electronic health data and imaging studies to supplement clinicians. Machine learning and deep learning are the most widely used AI methodologies for medical research and have been applied in pancreatobiliary diseases for which diagnosis and treatment selection are often complicated and require joint consideration of data from multiple sources. The aim of this review is to provide a concise introduction of the major AI methodologies and the current landscape of AI research in pancreatobiliary diseases.
引用
收藏
页码:286 / 294
页数:9
相关论文
共 53 条
[41]   Radiomics: the facts and the challenges of image analysis [J].
Rizzo S. ;
Botta F. ;
Raimondi S. ;
Origgi D. ;
Fanciullo C. ;
Morganti A.G. ;
Bellomi M. .
European Radiology Experimental, 2 (1)
[42]   U-Net: Convolutional Networks for Biomedical Image Segmentation [J].
Ronneberger, Olaf ;
Fischer, Philipp ;
Brox, Thomas .
MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION, PT III, 2015, 9351 :234-241
[43]   A multimodality test to guide the management of patients with a pancreatic cyst [J].
Springer, Simeon ;
Masica, David L. ;
Dal Molin, Marco ;
Douville, Christopher ;
Thoburn, Christopher J. ;
Afsari, Bahman ;
Li, Lu ;
Cohen, Joshua D. ;
Thompson, Elizabeth ;
Allen, Peter J. ;
Klimstra, David S. ;
Schattner, Mark A. ;
Schmidt, C. Max ;
Yip-Schneider, Michele ;
Simpson, Rachel E. ;
Fernandez-Del Castillo, Carlos ;
Mino-Kenudson, Mari ;
Brugge, William ;
Brand, Randall E. ;
Singhi, Aatur D. ;
Scarpa, Aldo ;
Lawlor, Rita ;
Salvia, Roberto ;
Zamboni, Giuseppe ;
Hong, Seung-Mo ;
Hwang, Dae Wook ;
Jang, Jin-Young ;
Kwon, Wooil ;
Swan, Niall ;
Geoghegan, Justin ;
Falconi, Massimo ;
Crippa, Stefano ;
Doglioni, Claudio ;
Paulino, Jorge ;
Schulick, Richard D. ;
Edil, Barish H. ;
Park, Walter ;
Yachida, Shinichi ;
Hijioka, Susumu ;
van Hooft, Jeanin ;
He, Jin ;
Weiss, Matthew J. ;
Burkhart, Richard ;
Makary, Martin ;
Canto, Marcia, I ;
Goggins, Michael G. ;
Ptak, Janine ;
Dobbyn, Lisa ;
Schaefer, Joy ;
Sillman, Natalie .
SCIENCE TRANSLATIONAL MEDICINE, 2019, 11 (501)
[44]   Deep learning analysis for the detection of pancreatic cancer on endosonographic images: a pilot study [J].
Tonozuka, Ryosuke ;
Itoi, Takao ;
Nagata, Naoyoshi ;
Kojima, Hiroyuki ;
Sofuni, Atsushi ;
Tsuchiya, Takayoshi ;
Ishii, Kentaro ;
Tanaka, Reina ;
Nagakawa, Yuichi ;
Mukai, Shuntaro .
JOURNAL OF HEPATO-BILIARY-PANCREATIC SCIENCES, 2021, 28 (01) :95-104
[45]   The Challenges of Implementing Artificial Intelligence into Surgical Practice [J].
Tranter-Entwistle, Isaac ;
Wang, Holly ;
Daly, Kenny ;
Maxwell, Scott ;
Connor, Saxon .
WORLD JOURNAL OF SURGERY, 2021, 45 (02) :420-428
[46]   Pancreatic ductal adenocarcinoma: a radiomics nomogram outperforms clinical model and TNM staging for survival estimation after curative resection [J].
Xie, Tiansong ;
Wang, Xuanyi ;
Li, Menglei ;
Tong, Tong ;
Yu, Xiaoli ;
Zhou, Zhengrong .
EUROPEAN RADIOLOGY, 2020, 30 (05) :2513-2524
[47]   Discrimination of Pancreatic Serous Cystadenomas From Mucinous Cystadenomas With CT Textural Features: Based on Machine Learning [J].
Yang, Ding ;
Guo, Xinli ;
Ou, Xuejin ;
Zhang, Weiwei ;
Ma, Xuelei .
FRONTIERS IN ONCOLOGY, 2019, 9
[48]   A Novel Approach to Assessing Differentiation Degree and Lymph Node Metastasis of Extrahepatic Cholangiocarcinoma: Prediction Using a Radiomics-Based Particle Swarm Optimization and Support Vector Machine Model [J].
Yao, Xiaopeng ;
Huang, Xinqiao ;
Yang, Chunmei ;
Hu, Anbin ;
Zhou, Guangjin ;
Lei, Jianbo ;
Shu, Jian .
JMIR MEDICAL INFORMATICS, 2020, 8 (10)
[49]   Deep learning and artificial intelligence in radiology: Current applications and future directions [J].
Yasaka, Koichiro ;
Abe, Osamu .
PLOS MEDICINE, 2018, 15 (11)
[50]   Tumor heterogeneity of pancreas head cancer assessed by CT texture analysis: association with survival outcomes after curative resection [J].
Yun, Gabin ;
Kim, Young Hoon ;
Lee, Yoon Jin ;
Kim, Bohyoung ;
Hwang, Jin-Hyeok ;
Choi, Dong Joon .
SCIENTIFIC REPORTS, 2018, 8