THE SELF-DUAL CHERN-SIMONS HIGGS EQUATION ON A COMPACT RIEMANN SURFACE WITH BOUNDARY

被引:3
作者
Wang, Meng [1 ]
机构
[1] Zhejiang Univ, Dept Math, Hangzhou 310027, Zhejiang, Peoples R China
关键词
Chern-Simons Higgs equation; compact Riemann surface; MULTIVORTEX SOLUTIONS; EXISTENCE; INEQUALITIES;
D O I
10.1142/S0129167X10005921
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the self-dual Chern-Simons Higgs equation on a compact Riemann surface with Neumann boundary condition. We show that the Chern-Simons Higgs equation with parameter lambda > 0 has at least two solutions (u(lambda)(1), u(lambda)(2)) for lambda sufficiently large, such that u(lambda)(1) -> -u(0) almost everywhere as lambda -> +infinity, and that u(lambda)(2) -> -infinity almost everywhere lambda -> infinity, where u(0) is a (negative) Green function on M.
引用
收藏
页码:67 / 76
页数:10
相关论文
共 18 条
[1]  
[Anonymous], 1996, VARIATIONAL METHODS, DOI DOI 10.1007/978-3-662-03212-1
[2]  
Aubin T., 1998, Springer Monographs in Mathematics
[3]  
Aubin T., 1982, Monge-Ampere Equations, V252
[4]   VORTEX CONDENSATION IN THE CHERN-SIMONS HIGGS-MODEL - AN EXISTENCE THEOREM [J].
CAFFARELLI, LA ;
YANG, YS .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 168 (02) :321-336
[5]   The existence of non-topological multivortex solutions in the relativistic self-dual Chern-Simons theory [J].
Chae, D ;
Imanuvilov, OY .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 215 (01) :119-142
[6]  
Chen W., 1991, J GEOM ANAL, V1, P359
[7]  
Ding W., 1997, ASIAN J MATH, V1, P230, DOI DOI 10.4310/AJM.1997.v1.n2.a3
[8]   An analysis of the two-vortex case in the Chern-Simons Higgs model [J].
Ding, WY ;
Jost, J ;
Li, JY ;
Wang, GF .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1998, 7 (01) :87-97
[9]   Self duality equations for Ginzburg-Landau and Seiberg-Witten type functionals with 6th order potentials [J].
Ding, WY ;
Jost, J ;
Li, JY ;
Peng, XW ;
Wang, GF .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 217 (02) :383-407
[10]   SHARP BORDERLINE SOBOLEV INEQUALITIES ON COMPACT RIEMANNIAN-MANIFOLDS [J].
FONTANA, L .
COMMENTARII MATHEMATICI HELVETICI, 1993, 68 (03) :415-454