Absolute Borel sets and function spaces

被引:13
作者
Marciszewski, W
Pelant, J
机构
[1] VRIJE UNIV AMSTERDAM, FAC MATH & COMP SCI, NL-1081 HV AMSTERDAM, NETHERLANDS
[2] ACAD SCI CZECH REPUBL, INST MATH, CR-11567 PRAGUE 1, CZECH REPUBLIC
关键词
absolute Borel set; function space;
D O I
10.1090/S0002-9947-97-01852-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An internal characterization of metric spaces which are absolute Borel sets of multiplicative classes is given. This characterization uses complete sequences of covers, a notion introduced by Frolik for characterizing Cech-complete spaces. We also show that the absolute Borel class of X is determined by the uniform structure of the space of continuous functions C-p(X); however the case of absolute Ga metric spaces is still open. More precisely, we prove that, far metrizable spaces X and Y, if Phi : C-p(X) --> C-p(Y) is a uniformly continuous surjection and X is an absolute Borel set of multiplicative (resp., additive) class alpha, alpha > 1, then Y is also an absolute Borel set of the same class. This result is new even if cp is a linear homeomorphism, and extends a result of Baars, de Groot, and Pelant which shows that the Cech-completeness of a metric space X is determined by the linear structure of C-p(X).
引用
收藏
页码:3585 / 3596
页数:12
相关论文
共 31 条
[11]  
COSTANTINI C, UNPUB COMPACTNESS HY
[12]  
DOBROWOLSKI T, 1995, FUND MATH, V148, P35
[13]   FUNCTION-SPACES HOMEOMORPHIC TO THE COUNTABLE PRODUCT OF L2F [J].
DOBROWOLSKI, T ;
GULKO, SP ;
MOGILSKI, J .
TOPOLOGY AND ITS APPLICATIONS, 1990, 34 (02) :153-160
[14]  
Engelking R., 1977, Math. Monographs, V60
[15]  
Fremlin DH., 1991, Atti Sem. Mat. Fis. Univ. Modena, V39, P29
[16]  
FROLIK Z, 1970, CZECH MATH J, V20, P406
[17]  
FROLIK Z, 1962, GENERAL TOPOLOGY ITS, P157
[18]  
FROLIK Z, 1960, CZECH MATH J, V10, P359
[19]  
FROLIK Z, 1960, COMMENT MATH U CAROL, V1, P1
[20]  
GULKO SP, 1990, T MAT I STEKLOVA, V193, P87