Absolute Borel sets and function spaces

被引:13
作者
Marciszewski, W
Pelant, J
机构
[1] VRIJE UNIV AMSTERDAM, FAC MATH & COMP SCI, NL-1081 HV AMSTERDAM, NETHERLANDS
[2] ACAD SCI CZECH REPUBL, INST MATH, CR-11567 PRAGUE 1, CZECH REPUBLIC
关键词
absolute Borel set; function space;
D O I
10.1090/S0002-9947-97-01852-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An internal characterization of metric spaces which are absolute Borel sets of multiplicative classes is given. This characterization uses complete sequences of covers, a notion introduced by Frolik for characterizing Cech-complete spaces. We also show that the absolute Borel class of X is determined by the uniform structure of the space of continuous functions C-p(X); however the case of absolute Ga metric spaces is still open. More precisely, we prove that, far metrizable spaces X and Y, if Phi : C-p(X) --> C-p(Y) is a uniformly continuous surjection and X is an absolute Borel set of multiplicative (resp., additive) class alpha, alpha > 1, then Y is also an absolute Borel set of the same class. This result is new even if cp is a linear homeomorphism, and extends a result of Baars, de Groot, and Pelant which shows that the Cech-completeness of a metric space X is determined by the linear structure of C-p(X).
引用
收藏
页码:3585 / 3596
页数:12
相关论文
共 31 条
[1]  
[Anonymous], 1988, B ACAD POL SCI
[2]  
[Anonymous], 1964, Mathematical Surveys
[3]  
Arkhangelskii A. V., 1992, Topological functions spaces
[4]  
ARKHANGELSKII AV, 1961, VEST MOSK U, P37
[5]   FUNCTION-SPACES OF COMPLETELY METRIZABLE-SPACES [J].
BAARS, J ;
DEGROOT, J ;
PELANT, J .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 340 (02) :871-883
[6]  
BARBATI A, 1993, REND 1 MAT TRIESTE, V25, P15
[7]  
Beer G., 1993, TOPOLOGIES CLOSED CL, DOI DOI 10.1007/978-94-015-8149-3
[8]  
BESSAGA C, 1975, SELECTED TOPICS INFI
[9]  
Christensen J. P. R., 1974, TOPOLOGY BOREL STRUC
[10]   EVERY WIJS']JSMAN TOPOLOGY RELATIVE TO A POLISH SPACE IS POLISH [J].
COSTANTINI, C .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 123 (08) :2569-2574