HOLOMORPHIC QUADRATIC DIFFERENTIALS AND THE BERNSTEIN PROBLEM IN HEISENBERG SPACE

被引:25
作者
Fernandez, Isabel [1 ]
Mira, Pablo [2 ]
机构
[1] Univ Seville, Dept Matemat Aplicada 1, E-41012 Seville, Spain
[2] Univ Politecn Cartagena, Dept Matemat Aplicada & Estadist, E-30203 Murcia, Spain
关键词
Minimal graphs; Bernstein problem; holomorphic quadratic differential; Heisenberg group; MEAN-CURVATURE SURFACES; H-2 X R; MINIMAL-SURFACES; HARMONIC MAPS;
D O I
10.1090/S0002-9947-09-04645-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We classify the entire minimal vertical graphs in the Heisenberg group Nil(3) endowed with a Riemannian left-invariant metric This classification, which provides It Solution to the Bernstein problem in Nil(3), is given in terms of the Abresch-Rosenberg holomorphic differential for minimal surfaces in Nil(3).
引用
收藏
页码:5737 / 5752
页数:16
相关论文
共 24 条
[1]   A Hopf differential for constant mean curvature surfaces in S2 x R and H2 x R [J].
Abresch, U ;
Rosenberg, H .
ACTA MATHEMATICA, 2004, 193 (02) :141-174
[2]  
Abresch U., 2005, Mat. Contemp., V28, P1
[3]   The Dirichlet problem for constant mean curvature surfaces in Heisenberg space [J].
Alias, Luis J. ;
Dajczer, Marcos ;
Rosenberg, Harold .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2007, 30 (04) :513-522
[4]  
BARONE V, 2007, CALC VAR PARTIAL DIF, V30, P17
[5]  
BRYANT RL, 1987, ASTERISQUE, P321
[6]  
Cheng JH, 2005, ANN SCUOLA NORM-SCI, V4, P129
[7]   MAXIMAL SPACE-LIKE HYPERSURFACES IN LORENTZ-MINKOWSKI SPACES [J].
CHENG, SY ;
YAU, ST .
ANNALS OF MATHEMATICS, 1976, 104 (03) :407-419
[8]  
COLLIN P, 2007, CONSTRUCTION HARMONI
[9]  
DANIEL B, 2007, HALF SPACE THEOREM E
[10]  
DANIEL B, 2006, GAUSS MAP MINIMAL SU