Partial synchronization in coupled chemical chaotic oscillators

被引:19
作者
Wang, Jun-Wei [1 ]
Chen, Ai-Min [2 ]
机构
[1] Guangdong Univ Foreign Studies, Sch Informat, Guangzhou 510006, Guangdong, Peoples R China
[2] Henan Univ, Sch Math & Informat Sci, Kaifeng 475004, Peoples R China
基金
中国国家自然科学基金;
关键词
Partial synchronization; Clustering; Linear invariant manifold; Chemical chaos; Nonlinear contraction principle; CLUSTER SYNCHRONIZATION; CONTRACTION ANALYSIS; LATTICES; SCHEMES;
D O I
10.1016/j.cam.2009.09.026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we investigate the problem of partial synchronization in diffusively coupled chemical chaotic oscillators with zero-flux boundary conditions. The dynamical properties of the chemical system which oscillates with Uniform Phase evolution, yet has Chaotic Amplitudes (UPCA) are first discussed. By combining numerical and analytical methods, the impossibility of full global synchronization in a network of two or three Coupled chemical oscillators is discovered. Mathematically, stable partial synchronization corresponds to convergence to a linear invariant manifold of the global state space. The sufficient conditions for exponential stability of the invariant manifold in a network of three coupled chemical oscillators are obtained via the nonlinear contraction principle. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:1897 / 1904
页数:8
相关论文
共 50 条
[41]   Single-clustering synchronization in a ring of Kuramoto oscillators [J].
Huang, Xia ;
Zhan, Meng ;
Li, Fan ;
Zheng, Zhigang .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2014, 47 (12)
[42]   SPATIOTEMPORAL PHASE SYNCHRONIZATION IN A LARGE ARRAY OF CONVECTIVE OSCILLATORS [J].
Miranda, Montserrat A. ;
Burguete, Javier .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2010, 20 (03) :835-847
[43]   Partial synchronization in complex networks: Chimera state, remote synchronization, and cluster synchronization [J].
Wang Zhen-Hua ;
Liu Zong-Hua .
ACTA PHYSICA SINICA, 2020, 69 (08)
[44]   Cluster synchronization in directed networks of partial-state coupled linear systems under pinning control [J].
Yu, Changbin ;
Qin, Jiahu ;
Gao, Huijun .
AUTOMATICA, 2014, 50 (09) :2341-2349
[45]   Synchronization on coupled dynamical networks [J].
Zheng Z.-G. ;
Feng X.-Q. ;
Ao B. ;
Cross M.C. .
Frontiers of Physics in China, 2006, 1 (4) :458-467
[46]   Cluster synchronization in an array of hybrid coupled neural networks with delay [J].
Cao, Jinde ;
Li, Lulu .
NEURAL NETWORKS, 2009, 22 (04) :335-342
[47]   Topological control of synchronous patterns in systems of networked chaotic oscillators [J].
Fu, Chenbo ;
Deng, Zhigang ;
Huang, Liang ;
Wang, Xingang .
PHYSICAL REVIEW E, 2013, 87 (03)
[48]   Synchronization of oscillators with long-range power law interactions [J].
Chowdhury, Debanjan ;
Cross, M. C. .
PHYSICAL REVIEW E, 2010, 82 (01)
[49]   Cluster Synchronization of Kuramoto Oscillators via Extended Averaging Criteria [J].
Kato, Rui ;
Ishii, Hideaki .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2024, 69 (12) :8386-8401
[50]   Fragmentary Synchronization in Chaotic Neural Network and Data Mining [J].
Benderskaya, Elena N. ;
Zhukova, Sofya V. .
HYBRID ARTIFICIAL INTELLIGENCE SYSTEMS, 2009, 5572 :319-+