Partial synchronization in coupled chemical chaotic oscillators

被引:19
作者
Wang, Jun-Wei [1 ]
Chen, Ai-Min [2 ]
机构
[1] Guangdong Univ Foreign Studies, Sch Informat, Guangzhou 510006, Guangdong, Peoples R China
[2] Henan Univ, Sch Math & Informat Sci, Kaifeng 475004, Peoples R China
基金
中国国家自然科学基金;
关键词
Partial synchronization; Clustering; Linear invariant manifold; Chemical chaos; Nonlinear contraction principle; CLUSTER SYNCHRONIZATION; CONTRACTION ANALYSIS; LATTICES; SCHEMES;
D O I
10.1016/j.cam.2009.09.026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we investigate the problem of partial synchronization in diffusively coupled chemical chaotic oscillators with zero-flux boundary conditions. The dynamical properties of the chemical system which oscillates with Uniform Phase evolution, yet has Chaotic Amplitudes (UPCA) are first discussed. By combining numerical and analytical methods, the impossibility of full global synchronization in a network of two or three Coupled chemical oscillators is discovered. Mathematically, stable partial synchronization corresponds to convergence to a linear invariant manifold of the global state space. The sufficient conditions for exponential stability of the invariant manifold in a network of three coupled chemical oscillators are obtained via the nonlinear contraction principle. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:1897 / 1904
页数:8
相关论文
共 50 条
[31]   Characterization and Computation of Partial Synchronization Manifolds for Diffusive Delay-Coupled Systems [J].
Steur, E. ;
Unal, H. U. ;
van Leeuwen, C. ;
Michiels, W. .
SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2016, 15 (04) :1874-1915
[32]   Synchronization in Dynamically Coupled Fractional-Order Chaotic Systems: Studying the Effects of Fractional Derivatives [J].
Echenausia-Monroy, J. L. ;
Rodriguez-Martine, C. A. ;
Ontanon-Garcia, L. J. ;
Alvarez, J. ;
Pena Ramirez, J. .
COMPLEXITY, 2021, 2021
[33]   Quasi-synchronization of nonlinear coupled chaotic systems via aperiodically intermittent pinning control [J].
Liu, Xiwei ;
Liu, Ying ;
Zhou, Lingjun .
NEUROCOMPUTING, 2016, 173 :759-767
[34]   Cluster Synchronization in Networks of Kuramoto Oscillators [J].
Favaretto, Chiara ;
Cenedese, Angelo ;
Pasqualetti, Fabio .
IFAC PAPERSONLINE, 2017, 50 (01) :2433-2438
[35]   Improving the frequency precision of oscillators by synchronization [J].
Cross, M. C. .
PHYSICAL REVIEW E, 2012, 85 (04)
[36]   Experimental Implementation of Networked Chaotic Oscillators Based on Cross-Coupled Inverter Rings in a CMOS Integrated Circuit [J].
Minati, Ludovico .
JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2015, 24 (09)
[37]   Synchronization in complex networks of phase oscillators: A survey [J].
Doerfler, Florian ;
Bullo, Francesco .
AUTOMATICA, 2014, 50 (06) :1539-1564
[38]   Connectivity and Synchronization in Bounded Confidence Kuramoto Oscillators [J].
Srivastava, Trisha ;
Bernardo, Carmela ;
Altafini, Claudio ;
Vasca, Francesco .
IEEE CONTROL SYSTEMS LETTERS, 2024, 8 :874-879
[39]   Single-clustering synchronization in a ring of Kuramoto oscillators [J].
Huang, Xia ;
Zhan, Meng ;
Li, Fan ;
Zheng, Zhigang .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2014, 47 (12)
[40]   SPATIOTEMPORAL PHASE SYNCHRONIZATION IN A LARGE ARRAY OF CONVECTIVE OSCILLATORS [J].
Miranda, Montserrat A. ;
Burguete, Javier .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2010, 20 (03) :835-847