Joint Region and Nucleus Segmentation for Characterization of Tumor Infiltrating Lymphocytes in Breast Cancer

被引:34
作者
Amgad, Mohamed [1 ,2 ]
Sarkar, Anindya [2 ]
Srinivas, Chukka [2 ]
Redman, Rachel [3 ]
Ratra, Simrath [2 ]
Bechert, Charles J. [3 ]
Calhoun, Benjamin C. [4 ]
Mrazeck, Karen [4 ]
Kurkure, Uday [2 ]
Cooper, Lee A. D. [1 ,5 ,6 ,7 ]
Barnes, Michael [3 ]
机构
[1] Emory Univ, Sch Med, Dept Biomed Informat, Atlanta, GA 30322 USA
[2] Roche Tissue Diagnost, Digital Pathol, Mountain View, CA USA
[3] Roche Diagnost Informat Solut, Belmont, CA 94002 USA
[4] Cleveland Clin, Dept Pathol, Robert J Tomsich Pathol & Lab Med Inst, Cleveland, OH 44106 USA
[5] Emory Univ, Winship Canc Inst, Atlanta, GA 30322 USA
[6] Emory Univ, Dept Biomed Engn, Atlanta, GA 30322 USA
[7] Georgia Inst Technol, Atlanta, GA 30332 USA
来源
MEDICAL IMAGING 2019: DIGITAL PATHOLOGY | 2019年 / 10956卷
关键词
Tumor infiltrating lymphocytes; convolutional networks; deep learning; computational pathology;
D O I
10.1117/12.2512892
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Histologic assessment of stromal tumor infiltrating lymphocytes (sTIL) as a surrogate of the host immune response has been shown to be prognostic and potentially chemo-predictive in triple-negative and HER2-positive breast cancers. The current practice of manual assessment is prone to intra-and inter-observer variability. Furthermore, the inter-play of sTILs, tumor cells, other microenvironment mediators, their spatial relationships, quantity, and other image-based features have yet to be determined exhaustively and systemically. Towards analysis of these aspects, we developed a deep learning based method for joint region-level and nucleus-level segmentation and classification of breast cancer H&E tissue whole slide images. Our proposed method simultaneously identifies tumor, fibroblast, and lymphocyte nuclei, along with key histologic region compartments including tumor and stroma. We also show how the resultant segmentation masks can be combined with seeding approaches to yield accurate nucleus classifications. Furthermore, we outline a simple workflow for calibrating computational scores to human scores for consistency. The pipeline identifies key compartments with high accuracy (Dice= overall: 0.78, tumor: 0.83, and fibroblasts: 0.77). ROC AUC for nucleus classification is high at 0.89 (micro-average), 0.89 (lymphocytes), 0.90 (tumor), and 0.78 (fibroblasts). Spearman correlation between computational sTIL and pathologist consensus is high (R=0.73, p<0.001) and is higher than inter-pathologist correlation (R=0.66, p<0.001). Both manual and computational sTIL scores successfully stratify patients by clinical progression outcomes.
引用
收藏
页数:8
相关论文
共 9 条
  • [1] [Anonymous], 2016, 100 LAYERS TIRAMISU
  • [2] [Anonymous], CIF 10 MULT GPU TRAI
  • [3] [Anonymous], GLAND SEGMENTATION H
  • [4] [Anonymous], 2015, FULLY CONVOLUTIONAL, DOI DOI 10.1109/CVPR.2015.7298965
  • [5] [Anonymous], 2016, Simple does it: Weakly supervised instance and semantic segmentation
  • [6] Assessing Tumor-Infiltrating Lymphocytes in Solid Tumors: A Practical Review for Pathologists and Proposal for a Standardized Method from the International Immuno-Oncology Biomarkers Working Group: Part 2: TILs in Melanoma, Gastrointestinal Tract Carcinomas, Non-Small Cell Lung Carcinoma and Mesothelioma, Endometrial and Ovarian Carcinomas, Squamous Cell Carcinoma of the Head and Neck, Genitourinary Carcinomas, and Primary Brain Tumors
    Hendry, Shona
    Salgado, Roberto
    Gevaert, Thomas
    Russell, Prudence A.
    John, Tom
    Thapa, Bibhusal
    Christie, Michael
    van de Vijver, Koen
    Estrada, M. V.
    Gonzalez-Ericsson, Paula I.
    Sanders, Melinda
    Solomon, Benjamin
    Solinas, Cinzia
    Van den Eynden, Gert G. G. M.
    Allory, Yves
    Preusser, Matthias
    Hainfellner, Johannes
    Pruneri, Giancarlo
    Vingiani, Andrea
    Demaria, Sandra
    Symmans, Fraser
    Nuciforo, Paolo
    Comerma, Laura
    Thompson, E. A.
    Lakhani, Sunil
    Kim, Seong-Rim
    Schnitt, Stuart
    Colpaert, Cecile
    Sotiriou, Christos
    Scherer, Stefan J.
    Ignatiadis, Michail
    Badve, Sunil
    Pierce, Robert H.
    Viale, Giuseppe
    Sirtaine, Nicolas
    Penault-Llorca, Frederique
    Sugie, Tomohagu
    Fineberg, Susan
    Paik, Soonmyung
    Srinivasan, Ashok
    Richardson, Andrea
    Wang, Yihong
    Chmielik, Ewa
    Brock, Jane
    Johnson, Douglas B.
    Balko, Justin
    Wienert, Stephan
    Bossuyt, Veerle
    Michiels, Stefan
    Ternes, Nils
    [J]. ADVANCES IN ANATOMIC PATHOLOGY, 2017, 24 (06) : 311 - 335
  • [7] Kingma DP, 2014, ADV NEUR IN, V27
  • [8] The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an International TILs Working Group 2014
    Salgado, R.
    Denkert, C.
    Demaria, S.
    Sirtaine, N.
    Klauschen, F.
    Pruneri, G.
    Wienert, S.
    Van den Eynden, G.
    Baehner, F. L.
    Penault-Llorca, F.
    Perez, E. A.
    Thompson, E. A.
    Symmans, W. F.
    Richardson, A. L.
    Brock, J.
    Criscitiello, C.
    Bailey, H.
    Ignatiadis, M.
    Floris, G.
    Sparano, J.
    Kos, Z.
    Nielsen, T.
    Rimm, D. L.
    Allison, K. H.
    Reis-Filho, J. S.
    Loibl, S.
    Sotiriou, C.
    Viale, G.
    Badve, S.
    Adams, S.
    Willard-Gallo, K.
    Loi, S.
    [J]. ANNALS OF ONCOLOGY, 2015, 26 (02) : 259 - 271
  • [9] Robust nucleus/cell detection and segmentation in digital pathology and microscopy images: A comprehensive review
    Xing F.
    Yang L.
    [J]. IEEE Reviews in Biomedical Engineering, 2016, 9 : 234 - 263