ON s-PERMUTABLE SUBGROUPS AND p-NILPOTENCY OF FINITE GROUPS

被引:9
作者
Wei, Xianbiao [1 ,2 ]
Guo, Xiuyun [1 ]
机构
[1] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
[2] Anhui Inst Architecture & Ind, Dept Math & Phys, Hefei, Peoples R China
基金
中国国家自然科学基金;
关键词
Finite groups; p-nilpotency; s-permutable subgroups; MINIMAL SUBGROUPS; QUASINORMALITY; NORMALITY;
D O I
10.1080/00927870802502852
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A subgroup H of a finite group G is said to be s-permutable in G if H permutes with every Sylow subgroup of G. In this article, some sufficient conditions for a finite group G to be p-nilpotent are given whenever all subgroups with order pm of a Sylow p-subgroup of G are s-permutable for a given positive integer m.
引用
收藏
页码:3410 / 3417
页数:8
相关论文
共 50 条
[31]   Finite p-groups which determine p-nilpotency locally [J].
Weigel, Thomas S. .
HOKKAIDO MATHEMATICAL JOURNAL, 2012, 41 (01) :11-29
[32]   Some Results on the p-Nilpotency and Supersolvability of Finite Groups [J].
Chen, Songliang ;
Fan, Yun .
SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2011, 35 (04) :601-610
[33]   Influence of partially τ-embedded subgroups of prime power order in supersolubility and p-nilpotency of finite groups [J].
Chen, Lian ;
Mahboob, Abid ;
Hussain, Taswer ;
Ali, Iftikhar .
JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE, 2019, 13 (01) :1044-1049
[34]   The influence of s-conditionally permutable subgroups on finite groups [J].
Li BaoJun ;
Zhang ZhiRang .
SCIENCE IN CHINA SERIES A-MATHEMATICS, 2009, 52 (02) :301-310
[35]   p-nilpotency criteria for some verbal subgroups [J].
Contreras-Rojas, Yerko ;
Grazian, Valentina ;
Monetta, Carmine .
JOURNAL OF ALGEBRA, 2022, 609 :926-936
[36]   A p-nilpotency criterion for finite groups with an application to coprime action [J].
Sun, Jian ;
Yu, Haoran ;
Xu, Xiaowei .
RICERCHE DI MATEMATICA, 2025,
[37]   On σ-conditionally permutable subgroups of finite groups [J].
Mao, Yuemei ;
Cao, Chenchen ;
Guo, Wenbin .
COMMUNICATIONS IN ALGEBRA, 2019, 47 (10) :4271-4282
[38]   A new criterion for p-nilpotency and solvability of finite groups by coprime actions [J].
Zhang, Boru ;
Lu, Jiakuan ;
Meng, Wei .
COMMUNICATIONS IN ALGEBRA, 2025, 53 (03) :994-1003
[39]   -permutable subgroups of finite groups [J].
Heliel, A. A. ;
Ballester-Bolinches, A. ;
Esteban-Romero, R. ;
Almestady, M. O. .
MONATSHEFTE FUR MATHEMATIK, 2016, 179 (04) :523-534
[40]   New Characterizations of p-Nilpotency and Sylow Tower Groups [J].
Li, Changwen .
BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2013, 36 (03) :845-854