In this paper, we study the asymptotic behavior as epsilon -> 0(+) of solutions u(epsilon) to the nonlocal stationary Fisher-KPP type equation 1/epsilon(m) integral(RN) J(epsilon)(x - y)(u(epsilon)(y) - u(epsilon)(x)) dy + u(epsilon)(x)(a(x) - u(epsilon)(x)) = 0 in R-N, where epsilon > 0 and 0 <= m < 2. Under rather mild assumptions and using very little technology, we prove that there exists one and only one positive solution u(epsilon) and that u(epsilon) -> a(+) as epsilon -> 0(+) where a(+) = max{0, a}. This generalizes the previously known results and answers an open question raised by Berestycki et al. Our method of proof is also of independent interest as it shows how to reduce this nonlocal problem to a local one. The sharpness of our assumptions is also briefly discussed.
机构:
Ecole Hautes Etud Sci Sociales, CAMS, 190-198 Ave France, F-75013 Paris, FranceEcole Hautes Etud Sci Sociales, CAMS, 190-198 Ave France, F-75013 Paris, France
Berestycki, Henri
Coville, Jerome
论文数: 0引用数: 0
h-index: 0
机构:
INRA, UR Biostat & Processus Spatiaux 546, Domaine St Paul Site Agroparc, F-84000 Avignon, FranceEcole Hautes Etud Sci Sociales, CAMS, 190-198 Ave France, F-75013 Paris, France
Coville, Jerome
Hoang-Hung Vo
论文数: 0引用数: 0
h-index: 0
机构:
Ton Duc Thang Univ, Fac Math & Stat, 19 Nguyen Huu Tho, Ho Chi Minh City, VietnamEcole Hautes Etud Sci Sociales, CAMS, 190-198 Ave France, F-75013 Paris, France
机构:
Ecole Hautes Etud Sci Sociales, CAMS, 190-198 Ave France, F-75013 Paris, FranceEcole Hautes Etud Sci Sociales, CAMS, 190-198 Ave France, F-75013 Paris, France
Berestycki, Henri
Coville, Jerome
论文数: 0引用数: 0
h-index: 0
机构:
INRA, UR Biostat & Processus Spatiaux 546, Domaine St Paul Site Agroparc, F-84000 Avignon, FranceEcole Hautes Etud Sci Sociales, CAMS, 190-198 Ave France, F-75013 Paris, France
Coville, Jerome
Hoang-Hung Vo
论文数: 0引用数: 0
h-index: 0
机构:
Ton Duc Thang Univ, Fac Math & Stat, 19 Nguyen Huu Tho, Ho Chi Minh City, VietnamEcole Hautes Etud Sci Sociales, CAMS, 190-198 Ave France, F-75013 Paris, France