TIME-VARYING GRAPH LEARNING BASED ON SPARSENESS OF TEMPORAL VARIATION

被引:0
作者
Yamada, Koki [1 ]
Tanaka, Yuichi [1 ,2 ]
Ortega, Antonio [3 ]
机构
[1] Tokyo Univ Agr & Technol, Grad Sch BASE, Tokyo, Japan
[2] Japan Sci & Technol Agcy, PRESTO, Saitama, Japan
[3] Univ Southern Calif, Dept Elect & Comp Engn, Los Angeles, CA USA
来源
2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP) | 2019年
关键词
Graph learning; time-varying graph; time-varying network; network inference; dynamic graph; NETWORKS;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
We propose a method for graph learning from spatiotemporal measurements. We aim at inferring time-varying graphs under the assumption that changes in graph topology and weights are sparse in time. The problem is formulated as a convex optimization problem to impose a constraint on the temporal relation of the time-varying graph. Experimental results with synthetic data show the effectiveness of our proposed method.
引用
收藏
页码:5411 / 5415
页数:5
相关论文
共 24 条
[1]  
Chepuri SP, 2017, INT CONF ACOUST SPEE, P6508, DOI 10.1109/ICASSP.2017.7953410
[2]   A Primal-Dual Splitting Method for Convex Optimization Involving Lipschitzian, Proximable and Linear Composite Terms [J].
Condat, Laurent .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2013, 158 (02) :460-479
[3]   Learning Laplacian Matrix in Smooth Graph Signal Representations [J].
Dong, Xiaowen ;
Thanou, Dorina ;
Frossard, Pascal ;
Vandergheynst, Pierre .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2016, 64 (23) :6160-6173
[4]   Graph Learning From Data Under Laplacian and Structural Constraints [J].
Egilmez, Hilmi E. ;
Pavez, Eduardo ;
Ortega, Antonio .
IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2017, 11 (06) :825-841
[5]  
Gadde A, 2013, IEEE IMAGE PROC, P1222, DOI 10.1109/ICIP.2013.6738252
[6]   Network Inference via the Time-Varying Graphical Lasso [J].
Hallac, David ;
Park, Youngsuk ;
Boyd, Stephen ;
Leskovec, Jure .
KDD'17: PROCEEDINGS OF THE 23RD ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2017, :205-213
[7]  
Johnson DB, 1996, Mob Comput, P153
[8]  
Kalofolias V, 2017, INT CONF ACOUST SPEE, P2826, DOI 10.1109/ICASSP.2017.7952672
[9]  
Kalofolias V, 2016, JMLR WORKSH CONF PRO, V51, P920
[10]   Inference of dynamic networks using time-course data [J].
Kim, Yongsoo ;
Han, Seungmin ;
Choi, Seungjin ;
Hwang, Daehee .
BRIEFINGS IN BIOINFORMATICS, 2014, 15 (02) :212-228