Characterizations for Strong Abadie Constraint Qualification and Applications to Calmness

被引:1
作者
Wei, Zhou [1 ]
Tammer, Christiane [2 ]
Yao, Jen-Chih [3 ,4 ]
机构
[1] Yunnan Univ, Dept Math, Kunming 650091, Yunnan, Peoples R China
[2] Martin Luther Univ Halle Wittenberg, Inst Math, D-06099 Halle, Saale, Germany
[3] China Med Univ, China Med Univ Hosp, Res Ctr Interneural Comp, Taichung 40402, Taiwan
[4] Natl Sun Yat Sen Univ, Dept Appl Math, Kaohsiung, Taiwan
关键词
Strong Abadie constraint qualification; Abadie constraint qualification; Convex multifunction; Calmness; Error bounds; ERROR-BOUNDS; CONVEX; REGULARITY; SYSTEMS;
D O I
10.1007/s10957-020-01808-5
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we mainly study the Abadie constraint qualification (ACQ) and the strong ACQ of a convex multifunction. To characterize the general difference between strong ACQ and ACQ, we prove that the strong ACQ is essentially equivalent to the ACQ plus the finite distance of two image sets of the tangent derivative multifunction on the sphere and the origin, respectively. This characterization for the strong ACQ is used to provide the exact calmness modulus of a convex multifunction. Finally, we apply these results to local and global error bounds for a convex inequality defined by a proper convex function. The characterization of the strong ACQ enables us to give primal equivalent criteria for local and global error bounds in terms of contingent cones and directional derivatives.
引用
收藏
页码:1 / 18
页数:18
相关论文
共 21 条
[1]  
[Anonymous], 1967, Nonlinear Programming
[2]   Characterizations of error bounds for lower semicontinuous functions on metric spaces [J].
Azé, D ;
Corvellec, JN .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2004, 10 (03) :409-425
[3]   Outer Limit of Subdifferentials and Calmness Moduli in Linear and Nonlinear Programming [J].
Canovas, M. J. ;
Henrion, R. ;
Lopez, M. A. ;
Parra, J. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2016, 169 (03) :925-952
[4]   Strong convergence of block-iterative outer approximation methods for convex optimization [J].
Combettes, PL .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2000, 38 (02) :538-565
[5]   Regularity and conditioning of solution mappings in variational analysis [J].
Dontchev, AL ;
Rockafellar, RT .
SET-VALUED ANALYSIS, 2004, 12 (1-2) :79-109
[6]  
Dontchev AL., 2009, IMPLICIT FUNCTIONS, DOI [10.1007/978-0-387-87821-8, DOI 10.1007/978-0-387-87821-8]
[7]   Calmness of constraint systems with applications [J].
Henrion, R ;
Outrata, JV .
MATHEMATICAL PROGRAMMING, 2005, 104 (2-3) :437-464
[8]   On the calmness of a class of multifunctions [J].
Henrion, R ;
Jourani, A ;
Outrata, J .
SIAM JOURNAL ON OPTIMIZATION, 2002, 13 (02) :603-618
[9]   Subdifferential conditions for calmness of convex constraints [J].
Henrion, R ;
Jourani, A .
SIAM JOURNAL ON OPTIMIZATION, 2002, 13 (02) :520-534
[10]  
Hiriart-Urruty JB., 1993, CONVEX ANAL MINIMIZA, DOI DOI 10.1007/978-3-662-06409-2