On iterative solutions of a split feasibility problem with nonexpansive mappings

被引:2
作者
Kutbi, M. A. [1 ]
Latif, A. [1 ]
Qin, X. [2 ]
机构
[1] King Abdulaziz Univ, Dept Math, Jeddah, Saudi Arabia
[2] Natl Yunlin Univ Sci & Technol, Gen Educ Ctr, Touliu, Taiwan
关键词
Fixed Point; Hilbert space; Monotone operator; Nonexpansive operator; Variational inequality; FIXED-POINT PROBLEMS; STRONG-CONVERGENCE; ACCRETIVE-OPERATORS; FINITE FAMILY; ZERO-POINT; ALGORITHMS; EQUILIBRIUM; WEAK;
D O I
10.1186/s13660-019-2173-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyze iterative solutions of a split feasibility problem with common fixed point constraints of a family of nonexpansive mappings. We present solution theorems of the feasibility problem under some weak assumptions imposed on different mappings and control sequences.
引用
收藏
页数:13
相关论文
共 35 条
  • [1] FIXED POINT ALGORITHMS FOR SPLIT FEASIBILITY PROBLEMS
    Al-Mazrooei, A. E.
    Latif, A.
    Qin, X.
    Yao, J. C.
    [J]. FIXED POINT THEORY, 2019, 20 (01): : 245 - 254
  • [2] Regularization of proximal point algorithms in Hadamard manifolds
    Ansari, Qamrul Hasan
    Babu, Feeroz
    Yao, Jen-Chih
    [J]. JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2019, 21 (01)
  • [3] Ansari QH, 2017, CARPATHIAN J MATH, V33, P9
  • [4] SPLIT FEASIBILITY AND FIXED POINT PROBLEMS FOR ASYMPTOTICALLY k-STRICT PSEUDO-CONTRACTIVE MAPPINGS IN INTERMEDIATE SENSE
    Ansari, Qamrul Hasan
    Rehan, Aisha
    Yao, Jen-Chih
    [J]. FIXED POINT THEORY, 2017, 18 (01): : 57 - 68
  • [5] Ansari QH, 2016, J NONLINEAR CONVEX A, V17, P1381
  • [6] Barbu V., 1976, NONLINEAR SEMIGROUPS
  • [7] Bin Dehaish BA, 2015, J NONLINEAR CONVEX A, V16, P1321
  • [8] Relaxed extragradient methods for finding minimum-norm solutions of the split feasibility problem
    Ceng, L. -C.
    Ansari, Q. H.
    Yao, J. -C.
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (04) : 2116 - 2125
  • [9] An extragradient method for solving split feasibility and fixed point problems
    Ceng, L-C
    Ansari, Q. H.
    Yao, J-C
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2012, 64 (04) : 633 - 642
  • [10] The multiple-sets split feasibility problem and its applications for inverse problems
    Censor, Y
    Elfving, T
    Kopf, N
    Bortfeld, T
    [J]. INVERSE PROBLEMS, 2005, 21 (06) : 2071 - 2084