Compressed Sensing MRI Reconstruction on Intel HARPv2

被引:3
作者
Su, Yushan [1 ]
Anderson, Michael [2 ]
Tamir, Jonathan I. [3 ]
Lustig, Michael [3 ]
Li, Kai [1 ]
机构
[1] Princeton Univ, Princeton, NJ 08544 USA
[2] Intel Labs, Hillsboro, OR USA
[3] Univ Calif Berkeley, Berkeley, CA 94720 USA
来源
2019 27TH IEEE ANNUAL INTERNATIONAL SYMPOSIUM ON FIELD-PROGRAMMABLE CUSTOM COMPUTING MACHINES (FCCM) | 2019年
关键词
D O I
10.1109/FCCM.2019.00041
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Implementing the Iterative Soft-Thresholding Algorithm (ISTA) of compressed sensing for MRI image reconstruction is a good candidate for designing accelerators because real-time functional MRI applications require intensive computations. A straightforward mapping of the computation graph of ISTA onto an FPGA, with a wide enough datapath to saturate memory bandwidth, would require substantial resources, such that a modest size FPGA would not fit the reconstruction pipeline for an entire MRI image. This paper proposes several methods to design the kernel components of ISTA, such as matrix transpose, datapath reuse, parallelism within maps, and data buffering to overcome the problem. Our implementation with Intel OpenCL SDK and performance evaluation on Intel HARPv2 show that our methods can map the reconstruction for the entire 256x256 MRI image with 8 or more channels to its FPGA, while achieving good overall performance.
引用
收藏
页码:254 / 257
页数:4
相关论文
共 50 条
  • [31] Compressed sensing MRI: A review
    Geethanath, S. (Sairam.Geethanath@dayanandasagar.edu), 1600, Begell House Inc. (41): : 183 - 204
  • [32] Compressed sensing for body MRI
    Feng, Li
    Benkert, Thomas
    Block, Kai Tobias
    Sodickson, Daniel K.
    Otazo, Ricardo
    Chandarana, Hersh
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2017, 45 (04) : 966 - 987
  • [33] Group-Sparsity Based Compressed Sensing Reconstruction for Fast Parallel MRI
    Datta, Sumit
    Deka, Bhabesh
    PATTERN RECOGNITION AND MACHINE INTELLIGENCE, PREMI 2019, PT II, 2019, 11942 : 70 - 77
  • [34] Compressed sensing in dynamic MRI
    Gamper, Urs
    Boesiger, Peter
    Kozerke, Sebastian
    MAGNETIC RESONANCE IN MEDICINE, 2008, 59 (02) : 365 - 373
  • [35] A computationally efficient OMP-based compressed sensing reconstruction for dynamic MRI
    Usman, M.
    Prieto, C.
    Odille, F.
    Atkinson, D.
    Schaeffter, T.
    Batchelor, P. G.
    PHYSICS IN MEDICINE AND BIOLOGY, 2011, 56 (07) : N99 - N114
  • [36] Provable Preconditioned Plug-and-Play Approach for Compressed Sensing MRI Reconstruction
    Hong, Tao
    Xu, Xiaojian
    Hu, Jason
    Fessler, Jeffrey A.
    IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2024, 10 : 1476 - 1488
  • [37] Efficient interpolated compressed sensing reconstruction scheme for 3D MRI
    Datta, Sumit
    Deka, Bhabesh
    IET IMAGE PROCESSING, 2018, 12 (11) : 2119 - 2127
  • [38] CALIBRATIONLESS OSCAR-BASED IMAGE RECONSTRUCTION IN COMPRESSED SENSING PARALLEL MRI
    El Gueddari, L.
    Ciuciu, P.
    Chouzenoux, E.
    Vignaud, A.
    Pesquet, J-C
    2019 IEEE 16TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2019), 2019, : 1532 - 1536
  • [39] Compressed Sensing MRI Reconstruction Using a Generative Adversarial Network With a Cyclic Loss
    Tran Minh Quan
    Thanh Nguyen-Duc
    Jeong, Won-Ki
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (06) : 1488 - 1497
  • [40] CORE-Deblur: Parallel MRI Reconstruction by Deblurring using compressed sensing
    Shimron, Efrat
    Webb, Andrew G.
    Azhari, Haim
    MAGNETIC RESONANCE IMAGING, 2020, 72 : 25 - 33