Compressed Sensing MRI Reconstruction on Intel HARPv2

被引:3
|
作者
Su, Yushan [1 ]
Anderson, Michael [2 ]
Tamir, Jonathan I. [3 ]
Lustig, Michael [3 ]
Li, Kai [1 ]
机构
[1] Princeton Univ, Princeton, NJ 08544 USA
[2] Intel Labs, Hillsboro, OR USA
[3] Univ Calif Berkeley, Berkeley, CA 94720 USA
来源
2019 27TH IEEE ANNUAL INTERNATIONAL SYMPOSIUM ON FIELD-PROGRAMMABLE CUSTOM COMPUTING MACHINES (FCCM) | 2019年
关键词
D O I
10.1109/FCCM.2019.00041
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Implementing the Iterative Soft-Thresholding Algorithm (ISTA) of compressed sensing for MRI image reconstruction is a good candidate for designing accelerators because real-time functional MRI applications require intensive computations. A straightforward mapping of the computation graph of ISTA onto an FPGA, with a wide enough datapath to saturate memory bandwidth, would require substantial resources, such that a modest size FPGA would not fit the reconstruction pipeline for an entire MRI image. This paper proposes several methods to design the kernel components of ISTA, such as matrix transpose, datapath reuse, parallelism within maps, and data buffering to overcome the problem. Our implementation with Intel OpenCL SDK and performance evaluation on Intel HARPv2 show that our methods can map the reconstruction for the entire 256x256 MRI image with 8 or more channels to its FPGA, while achieving good overall performance.
引用
收藏
页码:254 / 257
页数:4
相关论文
共 50 条
  • [1] Exploring Portability and Performance of OpenCL FPGA Kernels on Intel HARPv2
    Cabrera, Anthony M.
    Chamberlain, Roger D.
    PROCEEDINGS OF THE INTERNATIONAL WORKSHOP ON OPENCL (IWOCL'19), 2019,
  • [2] A Strategy to Support Streaming Communication using the Intel HARPv2 Platform: A Case Study in Stereo Vision Application
    Cambuim, Lucas F. S.
    Junior, Severino J. B.
    Banos, Edna N. S.
    2020 18TH IEEE INTERNATIONAL NEW CIRCUITS AND SYSTEMS CONFERENCE (NEWCAS'20), 2020, : 250 - 253
  • [3] A Customizable Matrix Multiplication Framework for the Intel HARPv2 Xeon+FPGA Platform A Deep Learning Case Study
    Moss, Duncan J. M.
    Krishnan, Srivatsan
    Nurvitadhi, Eriko
    Ratuszniak, Piotr
    Johnson, Chris
    Sim, Jaewoong
    Mishra, Asit
    Marr, Debbie
    Subhaschandra, Suchit
    Leong, Philip H. W.
    PROCEEDINGS OF THE 2018 ACM/SIGDA INTERNATIONAL SYMPOSIUM ON FIELD-PROGRAMMABLE GATE ARRAYS (FPGA'18), 2018, : 107 - 116
  • [4] MRI Reconstruction with LassoNet and Compressed Sensing
    De Gobbis, Andrea
    Sadikov, Aleksander
    Groznik, Vida
    ARTIFICIAL INTELLIGENCE IN MEDICINE, AIME 2022, 2022, 13263 : 291 - 295
  • [5] Adversarial and Perceptual Refinement for Compressed Sensing MRI Reconstruction
    Seitzer, Maximilian
    Yang, Guang
    Schlemper, Jo
    Oktay, Ozan
    Wuerfl, Tobias
    Christlein, Vincent
    Wong, Tom
    Mohiaddin, Raad
    Firmin, David
    Keegan, Jennifer
    Rueckert, Daniel
    Maier, Andreas
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2018, PT I, 2018, 11070 : 232 - 240
  • [6] Filter-based compressed sensing MRI reconstruction
    Wu, Ye-Cun
    Du, Huiqian
    Mei, Wenbo
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2016, 26 (03) : 173 - 178
  • [7] Modified POCS Based Reconstruction for Compressed Sensing in MRI
    Javed, Zoona
    Shahzad, Hassan
    Omer, Hammad
    Shahzad, Hassan
    2015 13TH INTERNATIONAL CONFERENCE ON FRONTIERS OF INFORMATION TECHNOLOGY (FIT), 2015, : 291 - 296
  • [8] The Application of Compressed Sensing Reconstruction Algorithms for MRI of Glioblastoma
    Zhang, Haowei
    Ren, Xiaoqian
    Liu, Ying
    Zhou, Qixin
    2017 10TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, BIOMEDICAL ENGINEERING AND INFORMATICS (CISP-BMEI), 2017,
  • [9] Interpolated Compressed Sensing for Calibrationless Parallel MRI Reconstruction
    Datta, Sumit
    Deka, Bhabesh
    2019 25TH NATIONAL CONFERENCE ON COMMUNICATIONS (NCC), 2019,
  • [10] Wavelet Tree Support Detection for Compressed Sensing MRI Reconstruction
    Deka, Bhabesh
    Datta, Sumit
    Handique, Sanjeev
    IEEE SIGNAL PROCESSING LETTERS, 2018, 25 (05) : 730 - 734