Chiral Graphene Quantum Dots

被引:314
|
作者
Suzuki, Nozomu [1 ,2 ,7 ]
Wang, Yichun [2 ,3 ]
Elvati, Paolo [3 ,4 ]
Qu, Zhi-Bei [1 ]
Kim, Kyoungwon [1 ,2 ]
Jiang, Shuang [1 ]
Baumeister, Elizabeth [4 ]
Lee, Jaewook [2 ,8 ,9 ]
Yeom, Bongjun [1 ,2 ,10 ]
Bahng, Joong Hwan [2 ,3 ]
Lee, Jaebeom [8 ]
Violi, Angela [3 ,4 ,6 ]
Kotov, Nicholas A. [2 ,3 ,4 ,5 ]
机构
[1] Univ Michigan, Dept Chem Engn, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Biointerfaces Inst, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Dept Biomed Engn, Ann Arbor, MI 48109 USA
[4] Univ Michigan, Dept Mech Engn, Ann Arbor, MI 48109 USA
[5] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA
[6] Univ Michigan, Dept Macromol Sci & Engn, Biophys Program, Ann Arbor, MI 48109 USA
[7] Nara Inst Sci & Technol, Grad Sch Mat Sci, Ikoma, Nara 89165, Japan
[8] Pusan Natl Univ, Dept Cognomechatron Engn, Miryang 627706, South Korea
[9] Univ Calgary, Dept Mech & Mfg Engn, Calgary, AB T2N 1N4, Canada
[10] Myongji Univ, Dept Chem Engn, Yongin 17058, South Korea
基金
美国国家科学基金会;
关键词
chirality; graphene quantum dots; circular dichroism; chiral excitons; biological activity; WALLED CARBON NANOTUBES; OPTICAL-ACTIVITY; CIRCULAR-DICHROISM; PLASMONIC NANOSTRUCTURES; CDTE NANOCRYSTALS; RAMAN-SCATTERING; ENERGY-TRANSFER; DNA DETECTION; FORCE-FIELD; NANOPARTICLES;
D O I
10.1021/acsnano.5b06369
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Chiral nanostructures from metals and semiconductors attract wide interest as components for polarization-enabled optoelectronic devices. Similarly to other fields of nanotechnology, graphene-based materials can greatly enrich physical and chemical phenomena associated with optical and electronic properties of chiral nanostructures and facilitate their applications in biology as well as other areas. Here, we report that covalent attachment of L/D-cysteine moieties to the edges of graphene quantum dots (GQDs) leads to their helical buckling due to chiral interactions at the "crowded" edges. Circular dichroism (CD) spectra of the GQDs revealed bands at ca. 210-220 and 250-265 nm that changed their signs for different chirality of the cysteine edge ligands. The high-energy chiroptical peaks at 210-220 nm correspond to the hybridized molecular orbitals involving the chiral center of amino acids and atoms of graphene edges. Diverse experimental and modeling data, including density functional theory calculations of CD spectra with probabilistic distribution of GQD isomers, indicate that the band at 250-265 nm originates from the three-dimensional twisting of the graphene sheet and can be attributed to the chiral excitonic transitions. The positive and negative low-energy CD bands correspond to the left and right helicity of GQDs, respectively. Exposure of liver HepG2 cells to L/D-GQDs reveals their general biocompatibility and a noticeable difference in the toxicity of the stereoisomers. Molecular dynamics simulations demonstrated that D-GQDs have a stronger tendency to accumulate within the cellular membrane than L-GQDs. Emergence of nanoscale chirality in GQDs decorated with biomolecules is expected to be a general stereochemical phenomenon for flexible sheets of nanomaterials.
引用
收藏
页码:1744 / 1755
页数:12
相关论文
共 50 条
  • [41] Heterogeneity in the fluorescence of graphene and graphene oxide quantum dots
    Siobhan J. Bradley
    Renee Kroon
    Geoffry Laufersky
    Magnus Röding
    Renee V. Goreham
    Tina Gschneidtner
    Kathryn Schroeder
    Kasper Moth-Poulsen
    Mats Andersson
    Thomas Nann
    Microchimica Acta, 2017, 184 : 871 - 878
  • [42] New insight into electrooxidation of graphene into graphene quantum dots
    Luo, Peihui
    Guan, Xiangfeng
    Yu, Yunlong
    Li, Xiaoyan
    CHEMICAL PHYSICS LETTERS, 2017, 690 : 129 - 132
  • [43] Heterogeneity in the fluorescence of graphene and graphene oxide quantum dots
    Bradley, Siobhan J.
    Kroon, Renee
    Laufersky, Geoffry
    Roding, Magnus
    Goreham, Renee V.
    Gschneidtner, Tina
    Schroeder, Kathryn
    Moth-Poulsen, Kasper
    Andersson, Mats
    Nann, Thomas
    MICROCHIMICA ACTA, 2017, 184 (03) : 871 - 878
  • [44] Coupled Quantum Dots in Bilayer Graphene
    Eich, Marius
    Pisoni, Riccardo
    Pally, Alessia
    Overweg, Hiske
    Kurzmann, Annika
    Lee, Yongjin
    Rickhaus, Peter
    Watanabe, Kenji
    Taniguchi, Takashi
    Ensslin, Klaus
    Ihn, Thomas
    NANO LETTERS, 2018, 18 (08) : 5042 - 5048
  • [45] Tunable quantum dots in monolayer graphene
    Giavaras, G.
    Nori, Franco
    PHYSICAL REVIEW B, 2012, 85 (16):
  • [46] Curvature and vacancies in graphene quantum dots
    Mombru, Dominique
    Romero, Mariano
    Faccio, Ricardo
    Mombru, Alvaro W.
    APPLIED SURFACE SCIENCE, 2018, 462 : 540 - 548
  • [47] Graphene Quantum Dots for Theranostics and Bioimaging
    Schroeder, Kathryn L.
    Goreham, Renee V.
    Nann, Thomas
    PHARMACEUTICAL RESEARCH, 2016, 33 (10) : 2337 - 2357
  • [48] Spin qubits in graphene quantum dots
    Trauzettel, Bjoern
    Bulaev, Denis V.
    Loss, Daniel
    Burkard, Guido
    NATURE PHYSICS, 2007, 3 (03) : 192 - 196
  • [49] Charge detection in graphene quantum dots
    Guettinger, J.
    Stampfer, C.
    Hellmueller, S.
    Molitor, F.
    Ihn, T.
    Ensslin, K.
    APPLIED PHYSICS LETTERS, 2008, 93 (21)
  • [50] Transport through graphene quantum dots
    Guettinger, J.
    Molitor, F.
    Stampfer, C.
    Schnez, S.
    Jacobsen, A.
    Droescher, S.
    Ihn, T.
    Ensslin, K.
    REPORTS ON PROGRESS IN PHYSICS, 2012, 75 (12)