IMPACT OF NANOPARTICLE CLUSTERING ON DOSE RADIO-ENHANCEMENT

被引:12
作者
Byrne, Hilary [1 ]
McNamara, Aimee [2 ]
Kuncic, Zdenka [1 ]
机构
[1] Univ Sydney, Sch Phys, Sydney, NSW, Australia
[2] Harvard Med Sch, Massachusetts Gen Hosp, Dept Radiat Oncol, 30 Fruit St, Boston, MA 02114 USA
关键词
ENERGY;
D O I
10.1093/rpd/ncy218
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
High atomic number nanoparticles (NPs) have been shown to enhance the effects of radiation in vitro and in vivo. However, NPs are often observed to cluster together, leading to inhomogeneous distribution within the tissue and within cells themselves. The effect of this clustering on the capability of NPs to enhance radiation dose has not yet been fully investigated. In this Monte Carlo simulation study, the dependence of radio-enhancement on a separation parameter characterising NP clustering was investigated. A target water cube of side length 100 mu m was simulated containing gold NPs constituting similar to 1% by mass. The NPs were placed in a cubic grid pattern and the separation distance between nanoparticles was varied. For NPs of 100 nm radius widely separated 2 mu m apart, 91% of the total energy deposit was found to occur in the surrounding water, compared to only 56% when the NPs were moved closer together to 0.2 mu m. The remaining energy deposit was absorbed by the NPs themselves. A similar trend was observed for NPs of radius 50 nm. The clustering effect was found to persist to greater separations for the larger NPs. The proportion of energy deposit in the available water of the target impacts the potential for cellular damage. Energy deposited within nanoparticles is unlikely to cause biological damage, as ionisations in the surrounding water are required to create radical oxygen species which then progress to cause the biological response to radiation. Clustering of nanoparticles is therefore expected to decrease their effectiveness for enhancing radiotherapy.
引用
收藏
页码:50 / 54
页数:5
相关论文
共 15 条
[1]   GEANT4-a simulation toolkit [J].
Agostinelli, S ;
Allison, J ;
Amako, K ;
Apostolakis, J ;
Araujo, H ;
Arce, P ;
Asai, M ;
Axen, D ;
Banerjee, S ;
Barrand, G ;
Behner, F ;
Bellagamba, L ;
Boudreau, J ;
Broglia, L ;
Brunengo, A ;
Burkhardt, H ;
Chauvie, S ;
Chuma, J ;
Chytracek, R ;
Cooperman, G ;
Cosmo, G ;
Degtyarenko, P ;
Dell'Acqua, A ;
Depaola, G ;
Dietrich, D ;
Enami, R ;
Feliciello, A ;
Ferguson, C ;
Fesefeldt, H ;
Folger, G ;
Foppiano, F ;
Forti, A ;
Garelli, S ;
Giani, S ;
Giannitrapani, R ;
Gibin, D ;
Cadenas, JJG ;
González, I ;
Abril, GG ;
Greeniaus, G ;
Greiner, W ;
Grichine, V ;
Grossheim, A ;
Guatelli, S ;
Gumplinger, P ;
Hamatsu, R ;
Hashimoto, K ;
Hasui, H ;
Heikkinen, A ;
Howard, A .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2003, 506 (03) :250-303
[2]   Dependence of Gold Nano Particles Cluster Morphology On Dose Enhancement of Photon Radiation Therapy Apply for Radiation Biology Effect [J].
Ahn, S. ;
Chung, K. ;
Han, Y. ;
Park, H. .
MEDICAL PHYSICS, 2016, 43 (06) :3616-3616
[3]   DNA Damage Enhancement from Gold Nanoparticles for Clinical MV Photon Beams [J].
Berbeco, Ross I. ;
Korideck, Houari ;
Ngwa, Wilfred ;
Kumar, Rajiv ;
Patel, Janki ;
Sridhar, Srinivas ;
Johnson, Sarah ;
Price, Brendan D. ;
Kimmelman, Alec ;
Makrigiorgos, G. Mike .
RADIATION RESEARCH, 2012, 178 (06) :604-608
[4]  
Berger M., NIST, PML, DOI DOI 10.18434/T48G6X
[5]   Track structure modeling in liquid water: A review of the Geant4-DNA very low energy extension of the Geant4 Monte Carlo simulation toolkit [J].
Bernal, M. A. ;
Bordage, M. C. ;
Brown, J. M. C. ;
Davidkova, M. ;
Delage, E. ;
El Bitar, Z. ;
Enger, S. A. ;
Francis, Z. ;
Guatelli, S. ;
Ivanchenko, V. N. ;
Karamitros, M. ;
Kyriakou, I. ;
Maigne, L. ;
Meylan, S. ;
Murakami, K. ;
Okada, S. ;
Payno, H. ;
Perrot, Y. ;
Petrovic, I. ;
Pham, Q. T. ;
Ristic-Fira, A. ;
Sasaki, T. ;
Stepan, V. ;
Tran, H. N. ;
Villagrasa, C. ;
Incerti, S. .
PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2015, 31 (08) :861-874
[6]   Impact of fluorescence emission from gold atoms on surrounding biological tissue-implications for nanoparticle radio-enhancement [J].
Byrne, H. L. ;
Gholami, Y. ;
Kuncic, Z. .
PHYSICS IN MEDICINE AND BIOLOGY, 2017, 62 (08) :3097-3110
[7]   Stopping power and ranges of electrons, protons and alpha particles in liquid water using the Geant4-DNA package [J].
Francis, Z. ;
Incerti, S. ;
Karamitros, M. ;
Tran, H. N. ;
Villagrasa, C. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2011, 269 (20) :2307-2311
[8]   The use of gold nanoparticles to enhance radiotherapy in mice [J].
Hainfeld, JF ;
Slatkin, DN ;
Smilowitz, HM .
PHYSICS IN MEDICINE AND BIOLOGY, 2004, 49 (18) :N309-N315
[9]   Comparison of GEANT4 very low energy cross section models with experimental data in water [J].
Incerti, S. ;
Ivanchenko, A. ;
Karamitros, M. ;
Mantero, A. ;
Moretto, P. ;
Tran, H. N. ;
Mascialino, B. ;
Champion, C. ;
Ivanchenko, V. N. ;
Bernal, M. A. ;
Francis, Z. ;
Villagrasa, C. ;
Baldacchino, G. ;
Gueye, P. ;
Capra, R. ;
Nieminen, P. ;
Zacharatou, C. .
MEDICAL PHYSICS, 2010, 37 (09) :4692-4708
[10]  
Kuncic Z, 2017, PHYS MED BIOL, DOI [10.1088/1361-6560/aa99ced, DOI 10.1088/1361-6560/AA99CED]