Hydrothermal synthesis of yttria stabilized ZrO2 nanoparticles in subcritical and supercritical water using a flow reaction system

被引:35
作者
Hayashi, Hiromichi [1 ]
Ueda, Akiko [1 ]
Suino, Atsuko [1 ]
Hiro, Yoko [1 ]
Hakuta, Yukiya [1 ]
机构
[1] Natl Inst Adv Ind Sci & Technol, Res Ctr Compact Chem Proc, Miyagino Ku, Sendai, Miyagi 9838551, Japan
关键词
Yttria stabilized zirconia; Hydrothermal synthesis; Supercritical water; Nanoparticle; Particle size; ZIRCONIA SOLID-SOLUTIONS; N-BUTANE ISOMERIZATION; ONE-STEP SYNTHESIS; CATALYTIC-ACTIVITY; CRYSTAL-STRUCTURES; DOPED ZIRCONIA; TEMPERATURE; POWDERS; NANOCRYSTALS; NUCLEATION;
D O I
10.1016/j.jssc.2009.08.013
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Yttria stabilized zirconia nanoparticles have been prepared by hydrothermal flow reaction system under subcritical and supercritical conditions. ZrO(NO3)(2)/Y(NO3)(3) mixed solutions were used as starting materials. Reaction temperature was 300-400 degrees C. Reaction time was adjusted to 0.17-0.35 s. Based on the residual Zr and Y concentrations, the complete conversion of zirconium was achieved irrespective of pH and hydrothermal temperature, whereas the conversion of yttrium increased with an increase in pH and hydrothermal temperature. Stoichiometric solid solution was achieved at pH > 8. XRD results revealed that tetragonal zirconia can be formed regardless of yttrium content, where the tetragonality was confirmed by Raman spectroscopy. The average particle size estimated from BET surface area was around 4-6 nm. Dynamic light scattering particle size increased with the solution pH owing to the aggregation of primary particles. TG-DTA analyses revealed that weight losses for adsorbed water and hydroxyl groups decreased with hydrothermal temperature. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:2985 / 2990
页数:6
相关论文
共 41 条
  • [1] Synthesis, characterisation and properties of Ni/PSZ and Ni/YSZ nanocomposites
    Aruna, ST
    Rajam, KS
    [J]. SCRIPTA MATERIALIA, 2003, 48 (05) : 507 - 512
  • [2] C-Evulet A., 2001, SCRIPTA MATER, V44, P2259
  • [3] Continuous hydrothermal synthesis of inorganic materials in a near-critical water flow reactor;: the one-step synthesis of nano-particulate Ce1-xZrxO2 (x=0-1) solid solutions
    Cabañas, A
    Darr, JA
    Lester, E
    Poliakoff, M
    [J]. JOURNAL OF MATERIALS CHEMISTRY, 2001, 11 (02) : 561 - 568
  • [4] A continuous and clean one-step synthesis of nano-particulate Ce1-xZrxO2 solid solutions in near-critical water
    Cabanas, A
    Darr, JA
    Lester, E
    Poliakoff, M
    [J]. CHEMICAL COMMUNICATIONS, 2000, (11) : 901 - 902
  • [5] Microwave synthesis of yttria stabilized zirconia
    Combemale, L
    Caboche, G
    Stuerga, D
    Chaumont, D
    [J]. MATERIALS RESEARCH BULLETIN, 2005, 40 (03) : 529 - 536
  • [6] Synthesis of Ce0.75Zr0.25O2 by citrate gel method
    Dhage, SR
    Gaikwad, SP
    Muthukumar, P
    Ravi, V
    [J]. MATERIALS LETTERS, 2004, 58 (21) : 2704 - 2706
  • [7] Modelling of nanoparticle formation during spray pyrolysis
    Eslamian, M
    Ahmed, M
    Ashgriz, N
    [J]. NANOTECHNOLOGY, 2006, 17 (06) : 1674 - 1685
  • [8] Pd supported on tetragonal zirconia:: Electrosynthesis, characterization and catalytic activity toward CO oxidation and CH4 combustion
    Faticanti, M
    Cioffi, N
    De Rossi, S
    Ditaranto, N
    Porta, P
    Sabbatini, L
    Bleve-Zacheo, T
    [J]. APPLIED CATALYSIS B-ENVIRONMENTAL, 2005, 60 (1-2) : 73 - 82
  • [9] Hakuta Y, 2004, J MATER RES, V19, P2230, DOI [10.1557/JMR.2004.0314, 10.1557/jmr.2004.0314]
  • [10] Direct measurement of entrainment during nanoparticle synthesis in spray flames
    Heine, MC
    Mädler, L
    Jossen, R
    Pratsinis, SE
    [J]. COMBUSTION AND FLAME, 2006, 144 (04) : 809 - 820