rPPG-Based Heart Rate Estimation Using Spatial-Temporal Attention Network

被引:17
作者
Hu, Min [1 ]
Guo, Dong [1 ]
Jiang, Mingxing [1 ,2 ]
Qian, Fei [1 ]
Wang, Xiaohua [1 ]
Ren, Fuji [1 ,3 ]
机构
[1] Hefei Univ Technol, Sch Comp & Informat, Anhui Prov Key Lab Affect Comp & Adv Intelligent M, Hefei 230602, Peoples R China
[2] Sch Commun & Informat Engn, Shanghai Univ, Shanghai 200444, Peoples R China
[3] Univ Tokushima, Grad Sch Adv Technol & Sci, Tokushima 7708502, Japan
基金
中国国家自然科学基金;
关键词
Heart rate; Videos; Cameras; Neural networks; Estimation; Deep learning; Physiology; Spatiotemporal phenomena; Photoplethysmography; Deep neural networks; heart rate (HR) estimation; remote photoplethysmography (rPPG); spatial-temporal attention; REMOTE PHOTOPLETHYSMOGRAPHY; NONCONTACT; PPG;
D O I
10.1109/TCDS.2021.3131197
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Remote photoplethysmography (rPPG) based on the computer vision technology is widely used to calculate the heart rate (HR) from facial videos. Existing rPPG techniques have been subject to some limitations [e.g., highly redundant spatial information, head movement noise, and region of interest (ROI) selection]. To address these limitations, this article introduces an effective spatial-temporal attention network. A temporal fusion module is first proposed to fully exploit the time-domain information, aiming to reduce the redundant video information and strengthen the association relationships of long-range videos. Furthermore, a spatial attention mechanism is designed in the backbone net to precisely target the skin ROIs. Finally, to assist the network in learning the weights between channels, we project the RGB images using the plane orthogonal to skin (POS) algorithm and add motion representation to complement physiological signals' extraction. The extensive experiments on the public PURE, MMSE-HR, and UBFC-rPPG datasets demonstrate that our model achieves competitive results compared with other methods.
引用
收藏
页码:1630 / 1641
页数:12
相关论文
共 59 条
[1]   Photoplethysmography and its application in clinical physiological measurement [J].
Allen, John .
PHYSIOLOGICAL MEASUREMENT, 2007, 28 (03) :R1-R39
[2]   Robust algorithm for remote photoplethysmography in realistic conditions [J].
Artemyev, Mikhail ;
Churikova, Marina ;
Grinenko, Mikhail ;
Perepelkina, Olga .
DIGITAL SIGNAL PROCESSING, 2020, 104
[3]  
Badrinarayanan V, 2015, Arxiv, DOI arXiv:1505.07293
[4]   CorNET: Deep Learning Framework for PPG-Based Heart Rate Estimation and Biometric Identification in Ambulant Environment [J].
Biswas, Dwaipayan ;
Everson, Luke ;
Liu, Muqing ;
Panwar, Madhuri ;
Verhoef, Bram-Ernst ;
Patki, Shrishail ;
Kim, Chris H. ;
Acharyya, Amit ;
Van Hoof, Chris ;
Konijnenburg, Mario ;
Van Helleputte, Nick .
IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, 2019, 13 (02) :282-291
[5]   Unsupervised skin tissue segmentation for remote photoplethysmography [J].
Bobbia, Serge ;
Macwan, Richard ;
Benezeth, Yannick ;
Mansouri, Alamin ;
Dubois, Julien .
PATTERN RECOGNITION LETTERS, 2019, 124 :82-90
[6]   3D Convolutional Neural Networks for Remote Pulse Rate Measurement and Mapping from Facial Video [J].
Bousefsaf, Frederic ;
Pruski, Alain ;
Maaoui, Choubeila .
APPLIED SCIENCES-BASEL, 2019, 9 (20)
[7]   Cardio-respiratory signal extraction from video camera data for continuous non-contact vital sign monitoring using deep learning [J].
Chaichulee, Sitthichok ;
Villarroel, Mauricio ;
Jorge, Joao ;
los Arteta, Car ;
McCormick, Kenny ;
Zisserman, Andrew ;
Tarassenko, Lionel .
PHYSIOLOGICAL MEASUREMENT, 2019, 40 (11)
[8]   DeepPhys: Video-Based Physiological Measurement Using Convolutional Attention Networks [J].
Chen, Weixuan ;
McDuff, Daniel .
COMPUTER VISION - ECCV 2018, PT II, 2018, 11206 :356-373
[9]  
Clevert DA, 2016, Arxiv, DOI [arXiv:1511.07289, DOI 10.48550/ARXIV.1511.07289, 10.48550/arxiv.1511.07289]
[10]   Robust Pulse Rate From Chrominance-Based rPPG [J].
de Haan, Gerard ;
Jeanne, Vincent .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2013, 60 (10) :2878-2886