Nodal solutions for a sublinear elliptic equation

被引:26
作者
Balabane, M
Dolbeault, J
Ounaies, H
机构
[1] Univ Paris 13, Dept Math, Inst Galilee, F-93430 Villetaneuse, France
[2] Univ Paris 09, CEREMADE, UMR CNRS 7534, F-75775 Paris 16, France
[3] Fac Sci Monastir, Dept Math, Monastir 5019, Tunisia
关键词
nodal solutions; shooting; Hamiltonian systems; winding number;
D O I
10.1016/S0362-546X(02)00104-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider radial solutions of Deltau + u - \u\(-20) u = 0 in R-d with d > 1, theta is an element of (0,(1)/(2)) and prove by a shooting method the existence of compactly supported solutions with any given number of nodes. (C) 2002 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:219 / 237
页数:19
相关论文
共 28 条
[1]   EXISTENCE OF STANDING WAVES FOR DIRAC FIELDS WITH SINGULAR NONLINEARITIES [J].
BALABANE, M ;
CAZENAVE, T ;
VAZQUEZ, L .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 133 (01) :53-74
[2]   EXISTENCE OF EXCITED-STATES FOR A NONLINEAR DIRAC FIELD [J].
BALABANE, M ;
CAZENAVE, T ;
DOUADY, A ;
MERLE, F .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 119 (01) :153-176
[3]  
BALBANE M, 1988, CR ACAD SCI PARIS S1, V306, P117
[4]   Classification of the solutions of semilinear elliptic problems in a ball [J].
Benguria, RD ;
Dolbeault, J ;
Esteban, MJ .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2000, 167 (02) :438-466
[5]  
BENILAN P, 1975, ANN SCUOLA NORM SU S, V2, P523
[6]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P347
[7]   CONTINUOUS STEINER-SYMMETRIZATION [J].
BROCK, F .
MATHEMATISCHE NACHRICHTEN, 1995, 172 :25-48
[8]   Continuous rearrangement and symmetry of solutions of elliptic problems [J].
Brock, F .
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2000, 110 (02) :157-204
[9]  
CAZENAVE T, REND MAT ROMA 7, V19, P211
[10]  
CORTAZAR C, 1996, ADV DIFF EQUATIONS, V1, P199