Functionalized Carbon Nanotube and MnO2 Nanoflower Hybrid as an Electrode Material for Supercapacitor Application

被引:17
作者
Mothkuri, Sagar [1 ]
Gupta, Honey [1 ]
Jain, Pawan K. [1 ]
Rao, Tata Narsinga [1 ]
Padmanabham, Gade [1 ]
Chakrabarti, Supriya [1 ,2 ]
机构
[1] Int Adv Res Ctr Powder Met & New Mat, Ctr Carbon Mat, Hyderabad 500005, Telangana, India
[2] Ulster Univ, Sch Engn, Nanotechnol & Integrated Bioengn Ctr NIBEC, Newtownabbey BT37 0QB, North Ireland
关键词
FCNT-MnO2; hydrothermal; supercapacitor; specific energy; specific power; HYDROTHERMAL SYNTHESIS; CONTROLLABLE SYNTHESIS; ALPHA-MNO2; ENERGY; PSEUDOCAPACITANCE; NANOCOMPOSITE; PERFORMANCE; FABRICATION; CONVERSION; NANORODS;
D O I
10.3390/mi12020213
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Functionalized carbon nanotube (FCNT) and Manganese Oxide (MnO2) nanoflower hybrid material was synthesized using hydrothermal technique as a promising electrode material for supercapacitor applications. The morphological investigation revealed the formation of 'nanoflower' like structure of MnO2 connected with FCNT, thus paving an easy path for the conduction of electrons during the electrochemical mechanism. A significant improvement in capacitance properties was observed in the hybrid material, in which carbon nanotube acts as a conducting cylindrical path, while the major role of MnO2 was to store the charge, acting as an electrolyte reservoir leading to an overall improved electrochemical performance. The full cell electrochemical analysis of FCNT-MnO2 hybrid using 3 M potassium hydroxide (KOH) electrolyte indicated a specific capacitance of 359.53 F g(-1), specific energy of 49.93 Wh kg(-1) and maximum specific power of 898.84 W kg(-1) at 5 mV s(-1). The results show promise for the future of supercapacitor development based on hybrid electrode materials, where high specific energy can be achieved along with high specific power and long cycle life.
引用
收藏
页数:16
相关论文
共 56 条
[1]   Crystalline MnO2 as possible alternatives to amorphous compounds in electrochemical supercapacitors [J].
Brousse, Thierry ;
Toupin, Mathieu ;
Dugas, Romain ;
Athouel, Laurence ;
Crosnier, Olivier ;
Belanger, Daniel .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2006, 153 (12) :A2171-A2180
[2]   MnO2-Carbon Nanotube Electrodes for Supercapacitors with High Active Mass Loadings [J].
Chen, Ri ;
Poon, Ryan ;
Sahu, Rakesh P. ;
Puri, Ishwar K. ;
Zhitomirsky, Igor .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (07) :A1673-A1678
[3]   One-pot synthesis of MnO2/graphene/carbon nanotube hybrid by chemical method [J].
Chen, Ying ;
Zhang, Yong ;
Geng, Dognsheng ;
Li, Ruying ;
Hong, Hanlie ;
Chen, Jingzhong ;
Sun, Xueliang .
CARBON, 2011, 49 (13) :4434-4442
[4]   Alternative energy technologies [J].
Dresselhaus, MS ;
Thomas, IL .
NATURE, 2001, 414 (6861) :332-337
[5]   Morphology-controlled synthesis and novel microwave electromagnetic properties of hollow urchin-like chain Fe-doped MnO2 under 10 T high magnetic field [J].
Duan Yuping ;
Zhang Jia ;
Jing Hui ;
Liu Shunhua .
JOURNAL OF SOLID STATE CHEMISTRY, 2011, 184 (05) :1165-1171
[6]   Carbon materials for the electrochemical storage of energy in capacitors [J].
Frackowiak, E ;
Béguin, F .
CARBON, 2001, 39 (06) :937-950
[7]   Debundling and dissolution of single-walled carbon nanotubes in amide solvents [J].
Furtado, CA ;
Kim, UJ ;
Gutierrez, HR ;
Pan, L ;
Dickey, EC ;
Eklund, PC .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (19) :6095-6105
[8]   High performance supercapacitor based on 2D-MoS2 nanostructures [J].
Gupta, Honey ;
Chakrabarti, S. ;
Mothkuri, Sagar ;
Padya, Balaji ;
Rao, T. N. ;
Jain, P. K. .
MATERIALS TODAY-PROCEEDINGS, 2020, 26 :20-24
[9]   Activated Functionalized Carbon Nanotubes and 2D Nanostructured MoS2 Hybrid Electrode Material for High-Performance Supercapacitor Applications [J].
Gupta, Honey ;
Mothkuri, Sagar ;
McGlynn, Ruairi ;
Carolan, Darragh ;
Maguire, Paul ;
Mariotti, Davide ;
Jain, P. K. ;
Rao, Tata Narasinga ;
Padmanabham, G. ;
Chakrabarti, Supriya .
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2020, 217 (10)
[10]  
Halper M.S., 2006, SUPERCAPACITORS BRIE