The dimension formula for the ring of code polynomials in genus 4

被引:0
作者
Oura, M [1 ]
机构
[1] KYUSHU UNIV,GRAD SCH MATH,HIGASHI KU,FUKUOKA 81281,JAPAN
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:53 / 72
页数:20
相关论文
共 50 条
[41]   Multivariable difference dimension polynomials [J].
Levin A.B. .
Journal of Mathematical Sciences, 2005, 131 (6) :6060-6082
[42]   The diagonal polynomials of dimension four [J].
Fetter, HL ;
Arredondo, JH ;
Morales, LB .
ADVANCES IN APPLIED MATHEMATICS, 2005, 34 (02) :316-334
[43]   On the dimension of an APN code [J].
John F. Dillon .
Cryptography and Communications, 2011, 3 :275-279
[44]   On the dimension of an APN code [J].
Dillon, John F. .
CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2011, 3 (04) :275-279
[45]   Multisymmetric polynomials in dimension three [J].
Domokos, Matyas ;
Puskas, Anna .
JOURNAL OF ALGEBRA, 2012, 356 (01) :283-303
[46]   A uniform asymptotic formula for orthogonal polynomials associated with exp(-x4) [J].
Rui, B ;
Wong, R .
JOURNAL OF APPROXIMATION THEORY, 1999, 98 (01) :146-166
[47]   RING OF REAL POLYNOMIALS [J].
PURSELL, LE .
AMERICAN MATHEMATICAL MONTHLY, 1969, 76 (05) :509-&
[48]   A DIMENSION FORMULA FOR BERNOULLI CONVOLUTIONS [J].
LEDRAPPIER, F ;
PORZIO, A .
JOURNAL OF STATISTICAL PHYSICS, 1994, 76 (5-6) :1307-1327
[49]   A Divergence Formula for Randomness and Dimension [J].
Lutz, Jack H. .
MATHEMATICAL THEORY AND COMPUTATIONAL PRACTICE, 2009, 5635 :342-351
[50]   INTERSECTION OF PULLBACKS AND THE DIMENSION FORMULA [J].
AYACHE, A ;
CAHEN, PJ ;
ECHI, O .
COMMUNICATIONS IN ALGEBRA, 1994, 22 (09) :3495-3509