The dimension formula for the ring of code polynomials in genus 4

被引:0
作者
Oura, M [1 ]
机构
[1] KYUSHU UNIV,GRAD SCH MATH,HIGASHI KU,FUKUOKA 81281,JAPAN
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:53 / 72
页数:20
相关论文
共 50 条
[31]   An alternative formula for Chebyshev polynomials [J].
Nadarajah, Saralees .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2008, 19 (06) :409-411
[32]   ADDITION FORMULA FOR LAGUERRE POLYNOMIALS [J].
KOORNWINDER, T .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1977, 8 (03) :535-540
[33]   An explicit formula for the Euler polynomials [J].
Luo, QM .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2006, 17 (06) :451-454
[34]   On the Mehler formula for Hermite polynomials [J].
O. V. Viskov .
Doklady Mathematics, 2008, 77 :1-4
[35]   A FORMULA FOR DERIVATIVES OF LEGENDRE POLYNOMIALS [J].
BOAS, ML .
AMERICAN MATHEMATICAL MONTHLY, 1963, 70 (06) :643-&
[36]   A New Formula for the Bernoulli Polynomials [J].
Mezo, Istvan .
RESULTS IN MATHEMATICS, 2010, 58 (3-4) :329-335
[37]   A RODRIGUES FORMULA FOR LAGUERRE POLYNOMIALS [J].
BRAGG, LR .
AMERICAN MATHEMATICAL MONTHLY, 1966, 73 (07) :749-&
[38]   ALTERNATIVE FORMULA FOR JACOBI POLYNOMIALS [J].
Nadarajah, Saralees .
MISSOURI JOURNAL OF MATHEMATICAL SCIENCES, 2008, 20 (02) :150-152
[39]   A tableau formula for eta polynomials [J].
Harry Tamvakis .
Mathematische Annalen, 2014, 358 :1005-1029
[40]   A Summation Formula for Macdonald Polynomials [J].
Jan de Gier ;
Michael Wheeler .
Letters in Mathematical Physics, 2016, 106 :381-394