The dimension formula for the ring of code polynomials in genus 4

被引:0
作者
Oura, M [1 ]
机构
[1] KYUSHU UNIV,GRAD SCH MATH,HIGASHI KU,FUKUOKA 81281,JAPAN
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:53 / 72
页数:20
相关论文
共 50 条
[21]   A Gleason formula for Ozeki polynomials [J].
Choie, Y ;
Solé, P .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2002, 98 (01) :60-73
[22]   A tableau formula for eta polynomials [J].
Tamvakis, Harry .
MATHEMATISCHE ANNALEN, 2014, 358 (3-4) :1005-1029
[23]   On the Mehler formula for Hermite polynomials [J].
Viskov, O. V. .
DOKLADY MATHEMATICS, 2008, 77 (01) :1-4
[24]   AN ADDITION FORMULA FOR TSCHEBYSCHEFF POLYNOMIALS [J].
MILGRAM, MS .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (08) :L323-L324
[25]   A combinatorial formula for Macdonald polynomials [J].
Ram, Arun ;
Yip, Martha .
ADVANCES IN MATHEMATICS, 2011, 226 (01) :309-331
[26]   A Summation Formula for Macdonald Polynomials [J].
de Gier, Jan ;
Wheeler, Michael .
LETTERS IN MATHEMATICAL PHYSICS, 2016, 106 (03) :381-394
[27]   The characteristic polynomials of abelian varieties of dimension 4 over finite fields [J].
Haloui, Safia ;
Singh, Vijaykumar .
ARITHMETIC, GEOMETRY, CRYPTOGRAPHY AND CODING THEORY, 2012, 574 :59-68
[28]   An alternative formula for Chebyshev polynomials [J].
Nadarajah, Saralees .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2008, 19 (06) :409-411
[29]   A combinatorial formula for Macdonald polynomials [J].
Haglund, J ;
Haiman, M ;
Loehr, N .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 18 (03) :735-761
[30]   ADDITION FORMULA FOR LAGUERRE POLYNOMIALS [J].
KOORNWINDER, T .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1977, 8 (03) :535-540