Universal entanglement for higher dimensional cones

被引:33
作者
Bueno, Pablo [1 ]
Myers, Robert C. [2 ]
机构
[1] UAM CSIC, Inst Fis Teor, Madrid 28049, Spain
[2] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Gauge-gravity correspondence; AdS-CFT Correspondence; QUANTUM-FIELD THEORY; CONFORMAL-INVARIANCE; ENTROPY;
D O I
10.1007/JHEP12(2015)168
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The entanglement entropy of a generic d-dimensional conformal field theory receives a regulator independent contribution when the entangling surface contains a (hyper)conical singularity of opening angle Omega, codified in a function a((d))(Omega). In arXiv : 1505 . 04804, we proposed that for three-dimensional conformal field theories, the coefficient sigma((3)) characterizing the limit where the surface becomes smooth is proportional to the central charge C-T appearing in the two-point function of the stress tensor. In this paper, we prove this relation for general three-dimensional holographic theories, and extend the result to general dimensions. In particular, we de fine a generalized coefficient sigma((d)) to characterize the almost smooth limit of a (hyper) conical singularity in entangling surfaces in higher dimensions. We show then that this coefficient is universally related to C-T for general holographic theories and provide a general formula for the ratio sigma((d))/C-T in arbitrary dimensions. We conjecture that the latter ratio is universal for general CFTs. Further, based on our recent results in arXiv : 1507 . 06997, we propose an extension of this relation to general Renyi entropies, which we show passes several consistency checks in d - 4 and 6.
引用
收藏
页码:1 / 24
页数:24
相关论文
共 52 条
[1]   Entanglement entropy for singular surfaces in hyperscaling violating theories [J].
Alishahiha, Mohsen ;
Astaneh, Amin Faraji ;
Fonda, Piermarco ;
Omidi, Farzad .
JOURNAL OF HIGH ENERGY PHYSICS, 2015, (09)
[2]   Some results on the shape dependence of entanglement and Renyi entropies [J].
Allais, Andrea ;
Mezei, Mark .
PHYSICAL REVIEW D, 2015, 91 (04)
[3]  
Bastianelli F, 2000, J HIGH ENERGY PHYS
[4]   Universal corner entanglement from twist operators [J].
Bueno, Pablo ;
Myers, Robert C. ;
Witczak-Krempa, William .
JOURNAL OF HIGH ENERGY PHYSICS, 2015, (09)
[5]   Corner contributions to holographic entanglement entropy [J].
Bueno, Pablo ;
Myers, Robert C. .
JOURNAL OF HIGH ENERGY PHYSICS, 2015, (08) :1-54
[6]   Universality of Corner Entanglement in Conformal Field Theories [J].
Bueno, Pablo ;
Myers, Robert C. ;
Witczak-Krempa, William .
PHYSICAL REVIEW LETTERS, 2015, 115 (02)
[7]   Entanglement entropy and quantum field theory [J].
Calabrese, P ;
Cardy, J .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2004,
[8]   Entanglement entropy and quantum field theory: A non-technical introduction [J].
Calabrese, Pasquale ;
Cardy, John .
INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2006, 4 (03) :429-438
[9]   Generalized entropy and higher derivative gravity [J].
Camps, Joan .
JOURNAL OF HIGH ENERGY PHYSICS, 2014, (03)
[10]   IS THERE A C-THEOREM IN 4 DIMENSIONS [J].
CARDY, JL .
PHYSICS LETTERS B, 1988, 215 (04) :749-752