Monotone scheme for nonlinear first-order hyperbolic initial-boundary value problems

被引:2
作者
Ackleh, AS [1 ]
Deng, K [1 ]
机构
[1] Univ SW Louisiana, Dept Math, Lafayette, LA 70504 USA
关键词
hyperbolic IBVP; upper-lower solutions; monotone approximation;
D O I
10.1016/S0893-9659(00)00042-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we develop a computationally attractive monotone scheme for a class of first-order hyperbolic initial-boundary value problems. We also show that such a scheme possesses a linear convergence to the solutions of problems being considered. (C) 2000 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:111 / 119
页数:9
相关论文
共 10 条
  • [1] ACKLEH AS, 1997, APPL ANAL, V67, P283
  • [2] ACKLEH AS, 1993, THESIS U TENNEESSEE
  • [3] AIKMAN DP, 1992, INDIVIDUAL-BASED MODELS AND APPROACHES IN ECOLOGY, P472
  • [4] Banks H. T., 1989, ESTIMATION TECHNIQUE
  • [5] BANKS HT, 1991, INT S NUM M, V100, P35
  • [6] BELLMAN R, 1973, METHODS NONLINEAR AN, V2
  • [7] FORD ED, 1992, INDIVIDUAL-BASED MODELS AND APPROACHES IN ECOLOGY, P363
  • [8] Ladde GS., 1985, MONOTONE ITERATIVE T
  • [9] Pao C.V., 1992, NONLINEAR PARABOLIC, DOI DOI 10.1007/978-1-4615-3034-3
  • [10] Pazy A., 1983, SEMIGROUPS LINEAR OP, DOI [10.1007/978-1-4612-5561-1, DOI 10.1007/978-1-4612-5561-1]