A class of learning/estimation algorithms using nominal values: Asymptotic analysis and applications

被引:0
|
作者
Yin, G [1 ]
Yin, K
Liu, B
Boukas, EK
机构
[1] Wayne State Univ, Dept Math, Detroit, MI 48202 USA
[2] Univ Minnesota, Dept Wood & Paper Sci, St Paul, MN 55108 USA
[3] Coll St Scholastica, Dept Math, Duluth, MN USA
[4] Ecole Polytech, Dept Mech Engn, Montreal, PQ H3C 3A7, Canada
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
learning; estimation; monitoring; industrial processes; kernel function; passive strategy; stochastic approximations;
D O I
10.1023/A:1004622313930
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
A class of estimation/learning algorithms using stochastic approximation in conjunction with two kernel functions is developed. This algorithm is recursive in form and uses known nominal values and other observed quantities. Its convergence analysis is carried out, the rate of convergence is also evaluated. Applications to a nonlinear chemical engineering system are examined through simulation study. The estimates obtained will be useful in process operation and control, and in on-line monitoring and fault detection.
引用
收藏
页码:189 / 212
页数:24
相关论文
共 50 条
  • [31] Generalized least squares estimation in contingency tables analysis: Asymptotic properties and applications
    Baccini, A
    Fekri, M
    Fine, J
    STATISTICS, 2000, 34 (04) : 267 - 300
  • [32] Asymptotic Analysis of MAP Estimation via the Replica Method and Applications to Compressed Sensing
    Rangan, Sundeep
    Fletcher, Alyson K.
    Goyal, Vivek K.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2012, 58 (03) : 1902 - 1923
  • [33] An Analysis of Machine Learning Algorithms for Condensing Reverse Engineered Class Diagrams
    Osman, Hafeez
    Chaudron, Michel R. V.
    van der Putten, Peter
    2013 29TH IEEE INTERNATIONAL CONFERENCE ON SOFTWARE MAINTENANCE (ICSM), 2013, : 140 - 149
  • [34] A survey on distributed estimation and control applications using linear consensus algorithms
    Garin F.
    Schenato L.
    Lecture Notes in Control and Information Sciences, 2010, 406 : 75 - 107
  • [35] Class separability estimation and incremental learning using boundary methods
    Sancho, JL
    Pierson, WE
    Ulug, B
    Figueiras-Vidal, AR
    Ahalt, SC
    NEUROCOMPUTING, 2000, 35 (35) : 3 - 26
  • [36] Using machine learning algorithms for predicting real estate values in tourism centers
    Alkan, Tansu
    Dokuz, Yesim
    Ecemis, Alper
    Bozdas, Asli
    Durduran, S. Savas
    SOFT COMPUTING, 2023, 27 (05) : 2601 - 2613
  • [37] Using machine learning algorithms for predicting real estate values in tourism centers
    Tansu Alkan
    Yeşim Dokuz
    Alper Ecemiş
    Aslı Bozdağ
    S. Savaş Durduran
    Soft Computing, 2023, 27 : 2601 - 2613
  • [38] State estimation of a biogas plant based on spectral analysis using a combination of machine learning and metaheuristic algorithms
    Putra, Lingga Aksara
    Koestler, Marlit
    Grundwuermer, Melissa
    Li, Liuyi
    Huber, Bernhard
    Gaderer, Matthias
    APPLIED ENERGY, 2025, 377
  • [39] Performance Analysis of Adaptive Filter and Machine Learning Algorithms for Heart Rate Estimation Using PPG Signal
    Yigzaw, Tsion
    Gared, Fikreselam
    Kassaw, Amare
    2021 INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION TECHNOLOGY FOR DEVELOPMENT FOR AFRICA (ICT4DA), 2021, : 6 - 11
  • [40] Asymptotic analysis of temporal-difference learning algorithms with constant step-sizes
    Vladislav B. Tadić
    Machine Learning, 2006, 63 : 107 - 133