Machine learning method for predicting pacemaker implantation following transcatheter aortic valve replacement

被引:17
作者
Truong, Vien T. [1 ,2 ]
Beyerbach, Daniel [1 ,2 ]
Mazur, Wojciech [1 ,2 ]
Wigle, Matthew [1 ,2 ]
Bateman, Emma [3 ]
Pallerla, Akhil [4 ]
Ngo, Tam N. M. [1 ,2 ]
Shreenivas, Satya [1 ,2 ]
Tretter, Justin T. [5 ]
Palmer, Cassady [1 ,2 ]
Kereiakes, Dean J. [1 ,2 ]
Chung, Eugene S. [1 ,2 ]
机构
[1] Christ Hosp, Hlth Network, Cincinnati, OH 45219 USA
[2] Lindner Res Ctr, 2123 Auburn Ave,Ste 424, Cincinnati, OH 45219 USA
[3] Univ Kentucky, Lexington, KY USA
[4] Univ Pittsburgh, Pittsburgh, PA USA
[5] Cincinnati Childrens Hosp Med Ctr, Inst Heart, Cincinnati, OH 45229 USA
来源
PACE-PACING AND CLINICAL ELECTROPHYSIOLOGY | 2021年 / 44卷 / 02期
关键词
machine learning; pacemaker implantation; prediction; random forest; TAVR; CORONARY-ARTERY-DISEASE; ALL-CAUSE MORTALITY; CONDUCTION DISTURBANCES; RANDOM FOREST; RISK; OUTCOMES; MODELS;
D O I
10.1111/pace.14163
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background An accurate assessment of permanent pacemaker implantation (PPI) risk following transcatheter aortic valve replacement (TAVR) is important for clinical decision making. The aims of this study were to investigate the significance and utility of pre- and post-TAVR ECG data and compare machine learning approaches with traditional logistic regression in predicting pacemaker risk following TAVR. Methods Five hundred fifity seven patients in sinus rhythm undergoing TAVR for severe aortic stenosis (AS) were included in the analysis. Baseline demographics, clinical, pre-TAVR ECG, post-TAVR data, post-TAVR ECGs (24 h following TAVR and before PPI), and echocardiographic data were recorded. A Random Forest (RF) algorithm and logistic regression were used to train models for assessing the likelihood of PPI following TAVR. Results Average age was 80 +/- 9 years, with 52% male. PPI after TAVR occurred in 95 patients (17.1%). The optimal cutoff of delta PR (difference between post and pre TAVR PR intervals) to predict PPI was 20 ms with a sensitivity of 0.82, a specificity of 0.66. With regard to delta QRS, the optimal cutoff was 13 ms with a sensitivity of 0.68 and a specificity of 0.59. The RF model that incorporated post-TAVR ECG data (AUC 0.81) more accurately predicted PPI risk compared to the RF model without post-TAVR ECG data (AUC 0.72). Moreover, the RF model performed better than logistic regression model in predicting PPI risk (AUC: 0.81 vs. 0.69). Conclusions Machine learning using RF methodology is significantly more powerful than traditional logistic regression in predicting PPI risk following TAVR.
引用
收藏
页码:334 / 340
页数:7
相关论文
共 28 条
[1]   Association Between Body Mass Index and Permanent Pacemaker Implantation After Transcatheter Aortic Valve Replacement (TAVR) with Edwards SAPIEN™ 3 TAVR Valves: A Single-Center Experience [J].
Ahmad, Mansoor ;
Patel, Jay N. ;
Loc, Brian L. ;
Vipparthy, Sharath C. ;
Divecha, Chirag ;
Barzallo, Pablo X. ;
Kim, Minchul ;
Baman, Timir ;
Barzallo, Marco ;
Mungee, Sudhir .
CUREUS JOURNAL OF MEDICAL SCIENCE, 2019, 11 (07)
[2]   Machine learning of clinical variables and coronary artery calcium scoring for the prediction of obstructive coronary artery disease on coronary computed tomography angiography: analysis from the CONFIRM registry [J].
Al'Arefilb, Subhi J. ;
Maliakal, Gabriel ;
Singh, Gurpreet ;
van Rosendael, Alexander R. ;
Ma, Xiaoyue ;
Xu, Zhuoran ;
Alawamlh, Omar Al Hussein ;
Lee, Benjamin ;
Pandey, Mohit ;
Achenbach, Stephan ;
Al-Mallah, Mouaz H. ;
Andreini, Daniele ;
Bax, Jeroen J. ;
Berman, Daniel S. ;
Budoff, Matthew J. ;
Cademartiri, Filippo ;
Canister, Tracy Q. ;
Chang, Hyuk-Jae ;
Chinnaiyan, Kavitha ;
Chow, Benjamin J. W. ;
Cury, Ricardo C. ;
DeLago, Augustin ;
Feuchtner, Gudrun ;
Hadamitzky, Martin ;
Hausleiter, Joerg ;
Kaufmann, Philipp A. ;
Kim, Yong-Jin ;
Leipsic, Jonathon A. ;
Maffei, Erica ;
Marques, Hugo ;
Goncalves, Pedro de Araujo ;
Pontone, Gianluca ;
Raff, Gilbert L. ;
Rubinshtein, Ronen ;
Villines, Todd C. ;
Gransar, Heidi ;
Lu, Yao ;
Jones, Erica C. ;
Pena, Jessica M. ;
Lin, Fay Y. ;
Min, James K. ;
Shaw, Leslee J. .
EUROPEAN HEART JOURNAL, 2020, 41 (03) :359-367
[3]   A Comparison of a Machine Learning Model with EuroSCORE II in Predicting Mortality after Elective Cardiac Surgery: A Decision Curve Analysis [J].
Allyn, Jerome ;
Allou, Nicolas ;
Augustin, Pascal ;
Philip, Ivan ;
Martinet, Olivier ;
Belghiti, Myriem ;
Provenchere, Sophie ;
Montravers, Philippe ;
Ferdynus, Cyril .
PLOS ONE, 2017, 12 (01)
[4]   Machine Learning Prediction of Mortality and Hospitalization in Heart Failure With Preserved Ejection Fraction [J].
Angraal, Suveen ;
Mortazavi, Bobak J. ;
Gupta, Aakriti ;
Khera, Rohan ;
Ahmad, Tariq ;
Desai, Nihar R. ;
Jacoby, Daniel L. ;
Masoudi, Frederick A. ;
Spertus, John A. ;
Krumholz, Harlan M. .
JACC-HEART FAILURE, 2020, 8 (01) :12-21
[5]   Conduction Disturbances After Transcatheter Aortic Valve Replacement Current Status and Future Perspectives [J].
Auffret, Vincent ;
Puri, Rishi ;
Urena, Marina ;
Chamandi, Chekrallah ;
Rodriguez-Gabella, Tania ;
Philippon, Francois ;
Rodes-Cabau, Josep .
CIRCULATION, 2017, 136 (11) :1049-+
[6]   2018 AATS/ACC/SCAI/STS Expert Consensus Systems of Care Document: Operator and Institutional Recommendations and Requirements for Transcatheter Aortic Valve Replacement [J].
Bavaria, Joseph E. ;
Tommaso, Carl L. ;
Brindis, Ralph G. ;
Carroll, John D. ;
Deeb, G. Michael ;
Feldman, Ted E. ;
Gleason, Thomas G. ;
Horlick, Eric M. ;
Kavinsky, Clifford J. ;
Kumbhani, Dharam J. ;
Miller, D. Craig ;
Seals, A. Allen ;
Shahian, David M. ;
Shemin, Richard J. ;
Sundt, Thoralf M., III ;
Thourani, Vinod H. .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2019, 73 (03) :340-374
[7]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[8]   SMOTE: Synthetic minority over-sampling technique [J].
Chawla, Nitesh V. ;
Bowyer, Kevin W. ;
Hall, Lawrence O. ;
Kegelmeyer, W. Philip .
2002, American Association for Artificial Intelligence (16)
[9]   Multiple Plasma Biomarkers for Risk Stratification in Patients With Heart Failure and Preserved Ejection Fraction [J].
Chirinos, Julio A. ;
Orlenko, Alena ;
Zhao, Lei ;
Basso, Michael D. ;
Cvijic, Mary Ellen ;
Li, Zhuyin ;
Spires, Thomas E. ;
Yarde, Melissa ;
Wang, Zhaoqing ;
Seiffert, Dietmar A. ;
Prenner, Stuart ;
Zamani, Payman ;
Bhattacharya, Priyanka ;
Kumar, Anupam ;
Margulies, Kenneth B. ;
Car, Bruce D. ;
Gordon, David A. ;
Moore, Jason H. ;
Cappola, Thomas P. .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2020, 75 (11) :1281-1295
[10]   Diagnostic Accuracy of a Machine-Learning Approach to Coronary Computed Tomographic Angiography-Based Fractional Flow Reserve Result From the MACHINE Consortium [J].
Coenen, Adriaan ;
Kim, Young-Hak ;
Kruk, Mariusz ;
Tesche, Christian ;
De Geer, Jakob ;
Kurata, Akira ;
Lubbers, Marisa L. ;
Daemen, Joost ;
Itu, Lucian ;
Rapaka, Saikiran ;
Sharma, Puneet ;
Schwemmer, Chris ;
Persson, Anders ;
Schoepf, U. Joseph ;
Kepka, Cezary ;
Yang, Dong Hyun ;
Nieman, Koen .
CIRCULATION-CARDIOVASCULAR IMAGING, 2018, 11 (06)